This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 134

2010 Romania Team Selection Test, 2

Let $n$ be a positive integer number and let $a_1, a_2, \ldots, a_n$ be $n$ positive real numbers. Prove that $f : [0, \infty) \rightarrow \mathbb{R}$, defined by \[f(x) = \dfrac{a_1 + x}{a_2 + x} + \dfrac{a_2 + x}{a_3 + x} + \cdots + \dfrac{a_{n-1} + x}{a_n + x} + \dfrac{a_n + x}{a_1 + x}, \] is a decreasing function. [i]Dan Marinescu et al.[/i]

2010 Today's Calculation Of Integral, 533

Let $ C$ be the circle with radius 1 centered on the origin. Fix the endpoint of the string with length $ 2\pi$ on the point $ A(1,\ 0)$ and put the other end point $ P$ on the point $ P_0(1,\ 2\pi)$. From this situation, when we twist the string around $ C$ by moving the point $ P$ in anti clockwise with the string streched tightly, find the length of the curve that the point $ P$ draws from sarting point $ P_0$ to reaching point $ A$.

2019 LIMIT Category B, Problem 5

The set of values of $m$ for which $mx^2-6mx+5m+1>0$ for all real $x$ is $\textbf{(A)}~m<\frac14$ $\textbf{(B)}~m\ge0$ $\textbf{(C)}~0\le m\le\frac14$ $\textbf{(D)}~0\le m<\frac14$

MathLinks Contest 7th, 5.3

If $ a\geq b\geq c\geq d > 0$ such that $ abcd\equal{}1$, then prove that \[ \frac 1{1\plus{}a} \plus{} \frac 1{1\plus{}b} \plus{} \frac 1{1\plus{}c} \geq \frac {3}{1\plus{}\sqrt[3]{abc}}.\]

MathLinks Contest 7th, 1.1

Given is an acute triangle $ ABC$ and the points $ A_1,B_1,C_1$, that are the feet of its altitudes from $ A,B,C$ respectively. A circle passes through $ A_1$ and $ B_1$ and touches the smaller arc $ AB$ of the circumcircle of $ ABC$ in point $ C_2$. Points $ A_2$ and $ B_2$ are defined analogously. Prove that the lines $ A_1A_2$, $ B_1B_2$, $ C_1C_2$ have a common point, which lies on the Euler line of $ ABC$.

1995 Canada National Olympiad, 5

$u$ is a real parameter such that $0<u<1$. For $0\le x \le u$, $f(x)=0$. For $u\le x \le n$, $f(x)=1-\left(\sqrt{ux}+\sqrt{(1-u)(1-x)}\right)^2$. The sequence $\{u_n\}$ is define recursively as follows: $u_1=f(1)$ and $u_n=f(u_{n-1})$ $\forall n\in \mathbb{N}, n\neq 1$. Show that there exists a positive integer $k$ for which $u_k=0$.

MathLinks Contest 7th, 4.3

Let $ a,b,c$ be positive real numbers such that $ ab\plus{}bc\plus{}ca\equal{}3$. Prove that \[ \frac 1{1\plus{}a^2(b\plus{}c)} \plus{} \frac 1{1\plus{}b^2(c\plus{}a)} \plus{} \frac 1 {1\plus{}c^2(a\plus{}b) } \leq \frac 3 {1\plus{}2abc} .\]

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 4

Let $\alpha,\ \beta$ be real numbers. Find the ranges of $\alpha,\ \beta$ such that the improper integral $\int_1^{\infty} \frac{x^{\alpha}\ln x}{(1+x)^{\beta}}$ converges.

2006 JBMO ShortLists, 4

Determine the biggest possible value of $ m$ for which the equation $ 2005x \plus{} 2007y \equal{} m$ has unique solution in natural numbers.

1967 IMO Longlists, 28

Find values of the parameter $u$ for which the expression \[y = \frac{ \tan(x-u) + \tan(x) + \tan(x+u)}{ \tan(x-u)\tan(x)\tan(x+u)}\] does not depend on $x.$

2004 Bundeswettbewerb Mathematik, 2

Let $k$ be a positive integer. In a circle with radius $1$, finitely many chords are drawn. You know that every diameter of the circle intersects at most $k$ of these chords. Prove that the sum of the lengths of all these chords is less than $k \cdot \pi$.

2008 Iran MO (3rd Round), 4

=A subset $ S$ of $ \mathbb R^2$ is called an algebraic set if and only if there is a polynomial $ p(x,y)\in\mathbb R[x,y]$ such that \[ S \equal{} \{(x,y)\in\mathbb R^2|p(x,y) \equal{} 0\} \] Are the following subsets of plane an algebraic sets? 1. A square [img]http://i36.tinypic.com/28uiaep.png[/img] 2. A closed half-circle [img]http://i37.tinypic.com/155m155.png[/img]

1957 Czech and Slovak Olympiad III A, 1

Find all real numbers $p$ such that the equation $$\sqrt{x^2-5p^2}=px-1$$ has a root $x=3$. Then, solve the equation for the determined values of $p$.

2013 Math Prize for Girls Olympiad, 2

Say that a (nondegenerate) triangle is [i]funny[/i] if it satisfies the following condition: the altitude, median, and angle bisector drawn from one of the vertices divide the triangle into 4 non-overlapping triangles whose areas form (in some order) a 4-term arithmetic sequence. (One of these 4 triangles is allowed to be degenerate.) Find with proof all funny triangles.

1956 Moscow Mathematical Olympiad, 332

Prove that the system of equations $\begin{cases} x_1 - x_2 = a \\ x_3 - x_4 = b \\ x_1 + x_2 + x_3 + x_4 = 1\end{cases}$ has at least one solution in positive numbers ($x_1 ,x_2 ,x_3 ,x_4>0$) if and only if $|a| + |b| < 1$.

2013 ELMO Shortlist, 1

Find all ordered triples of non-negative integers $(a,b,c)$ such that $a^2+2b+c$, $b^2+2c+a$, and $c^2+2a+b$ are all perfect squares. [i]Proposed by Matthew Babbitt[/i]

1963 IMO, 4

Find all solutions $x_1, x_2, x_3, x_4, x_5$ of the system \[ x_5+x_2=yx_1 \] \[ x_1+x_3=yx_2 \] \[ x_2+x_4=yx_3 \] \[ x_3+x_5=yx_4 \] \[ x_4+x_1=yx_5 \] where $y$ is a parameter.

2009 Italy TST, 2

$ABC$ is a triangle in the plane. Find the locus of point $P$ for which $PA,PB,PC$ form a triangle whose area is equal to one third of the area of triangle $ABC$.

2008 Greece Team Selection Test, 4

Given is the equation $x^2+y^2-axy+2=0$ where $a$ is a positive integral parameter. $i.$Show that,for $a\neq 4$ there exist no pairs $(x,y)$ of positive integers satisfying the equation. $ii.$ Show that,for $a=4$ there exist infinite pairs $(x,y)$ of positive integers satisfying the equation,and determine those pairs.

2012 Greece National Olympiad, 1

Let positive integers $p,q$ with $\gcd(p,q)=1$ such as $p+q^2=(n^2+1)p^2+q$. If the parameter $n$ is a positive integer, find all possible couples $(p,q)$.

VII Soros Olympiad 2000 - 01, 11.2

For all valid values ​​of $a, b$, and $c$, solve the equation $$\frac{a (x-b) (x-c) }{(a-b) (a-c)} + \frac{b (x-c) (x-a)}{(b-c) (b-a)} +\frac{c (x-a) (x-b) }{(c-a ) (c-b)} = x^2$$

2024 Polish MO Finals, 4

Do there exist real numbers $a,b,c$ such that the system of equations \begin{align*} x+y+z&=a\\ x^2+y^2+z^2&=b\\ x^4+y^4+z^4&=c \end{align*} has infinitely many real solutions $(x,y,z)$?

1967 IMO Shortlist, 4

Find values of the parameter $u$ for which the expression \[y = \frac{ \tan(x-u) + \tan(x) + \tan(x+u)}{ \tan(x-u)\tan(x)\tan(x+u)}\] does not depend on $x.$

2024 Austrian MO National Competition, 1

Let $\alpha$ and $\beta$ be real numbers with $\beta \ne 0$. Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that \[f(\alpha f(x)+f(y))=\beta x+f(y)\] holds for all real $x$ and $y$. [i](Walther Janous)[/i]

1994 Balkan MO, 1

An acute angle $XAY$ and a point $P$ inside the angle are given. Construct (using a ruler and a compass) a line that passes through $P$ and intersects the rays $AX$ and $AY$ at $B$ and $C$ such that the area of the triangle $ABC$ equals $AP^2$. [i]Greece[/i]