Found problems: 133
1999 Tournament Of Towns, 4
Is it possible to divide the integers from $1$ to $100$ inclusive into $50$ pairs such that for $1\le k\le 50$, the difference between the two numbers in the $k$-th pair is $k$?
(V Proizvolov)
2003 Gheorghe Vranceanu, 4
Prove that among any $ 16 $ numbers smaller than $ 101 $ there are four of them that have the property that the sum of two of them is equal to the sum of the other two.
1993 Romania Team Selection Test, 3
Show that the set $\{1,2,....,2^n\}$ can be partitioned in two classes, none of which contains an arithmetic progression of length $2n$.
1987 Austrian-Polish Competition, 5
The Euclidian three-dimensional space has been partitioned into three nonempty sets $A_1,A_2,A_3$. Show that one of these sets contains, for each $d > 0$, a pair of points at mutual distance $d$.
1978 IMO Longlists, 26
For every integer $d \geq 1$, let $M_d$ be the set of all positive integers that cannot be written as a sum of an arithmetic progression with difference $d$, having at least two terms and consisting of positive integers. Let $A = M_1$, $B = M_2 \setminus \{2 \}, C = M_3$. Prove that every $c \in C$ may be written in a unique way as $c = ab$ with $a \in A, b \in B.$
2013 IMO Shortlist, C4
Let $n$ be a positive integer, and let $A$ be a subset of $\{ 1,\cdots ,n\}$. An $A$-partition of $n$ into $k$ parts is a representation of n as a sum $n = a_1 + \cdots + a_k$, where the parts $a_1 , \cdots , a_k $ belong to $A$ and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{ a_1 , a_2 , \cdots , a_k \} $.
We say that an $A$-partition of $n$ into $k$ parts is optimal if there is no $A$-partition of $n$ into $r$ parts with $r<k$. Prove that any optimal $A$-partition of $n$ contains at most $\sqrt[3]{6n}$ different parts.
2021 Azerbaijan IMO TST, 2
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
2003 Putnam, 1
Let $n$ be a fixed positive integer. How many ways are there to write $n$ as a sum of positive integers,
\[n = a_1 + a_2 + \cdots a_k\]
with $k$ an arbitrary positive integer and $a_1 \le a_2 \le \cdots \le a_k \le a_1 + 1$? For example, with $n = 4$, there are four ways: $4$, $2 + 2$, $1 + 1 + 2$, $1 + 1 + 1 + 1$.
2021 Germany Team Selection Test, 1
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
1991 Czech And Slovak Olympiad IIIA, 6
The set $N$ is partitioned into three subsets $A_1,A_2,A_3$.
Prove that at least one of them has the following property: There exists a positive number $m$ such that for any $k$ one can find numbers $a_1 < a_2 < ... < a_k$ in that subset satisfying $a_{j+1} -a_j \le m$ for $j = 1,...,k -1$.
Novosibirsk Oral Geo Oly VIII, 2022.6
Anton has an isosceles right triangle, which he wants to cut into $9$ triangular parts in the way shown in the picture. What is the largest number of the resulting $9$ parts that can be equilateral triangles?
A more formal description of partitioning. Let triangle $ABC$ be given. We choose two points on its sides so that they go in the order $AC_1C_2BA_1A_2CB_1B_2$, and no two coincide. In addition, the segments $C_1A_2$, $A_1B_2$ and $B_1C_2$ must intersect at one point. Then the partition is given by segments $C_1A_2$, $A_1B_2$, $B_1C_2$, $A_1C_2$, $B_1A_2$ and $C_1B_2$.
[img]https://cdn.artofproblemsolving.com/attachments/0/5/5dd914b987983216342e23460954d46755d351.png[/img]
2008 Indonesia TST, 4
There are $15$ people, including Petruk, Gareng, and Bagong, which will be partitioned into $6$ groups, randomly, that consists of $3, 3, 3, 2, 2$, and $2$ people (orders are ignored). Determine the probability that Petruk, Gareng, and Bagong are in a group.
1988 Tournament Of Towns, (177) 3
The set of all $10$-digit numbers may be represented as a union of two subsets: the subset $M$ consisting of all $10$-digit numbers, each of which may be represented as a product of two $5$-digit numbers, and the subset $N$ , containing the remaining $10$-digit numbers . Which of the sets $M$ and $N$ contains more elements?
(S. Fomin , Leningrad)
1978 IMO Longlists, 24
Let $0<f(1)<f(2)<f(3)<\ldots$ a sequence with all its terms positive$.$ The $n-th$ positive integer which doesn't belong to the sequence is $f(f(n))+1.$ Find $f(240).$
1988 Spain Mathematical Olympiad, 5
A well-known puzzle asks for a partition of a cross into four parts which are to be reassembled into a square. One solution is exhibited on the picture.
[img]https://cdn.artofproblemsolving.com/attachments/9/1/3b8990baf5e37270c640e280c479b788d989ba.png[/img]
Show that there are infinitely many solutions. (Some solutions split the cross into four equal parts!)
1978 Swedish Mathematical Competition, 5
$k > 1$ is fixed. Show that for $n$ sufficiently large for every partition of $\{1,2,\dots,n\}$ into $k$ disjoint subsets we can find $a \neq b$ such that $a$ and $b$ are in the same subset and $a+1$ and $b+1$ are in the same subset. What is the smallest $n$ for which this is true?
2001 IMO Shortlist, 4
A set of three nonnegative integers $\{x,y,z\}$ with $x < y < z$ is called [i]historic[/i] if $\{z-y,y-x\} = \{1776,2001\}$. Show that the set of all nonnegative integers can be written as the union of pairwise disjoint historic sets.
2024 Germany Team Selection Test, 3
Let $N$ be a positive integer, and consider an $N \times N$ grid. A [i]right-down path[/i] is a sequence of grid cells such that each cell is either one cell to the right of or one cell below the previous cell in the sequence. A [i]right-up path[/i] is a sequence of grid cells such that each cell is either one cell to the right of or one cell above the previous cell in the sequence.
Prove that the cells of the $N \times N$ grid cannot be partitioned into less than $N$ right-down or right-up paths. For example, the following partition of the $5 \times 5$ grid uses $5$ paths.
[asy]
size(4cm);
draw((5,-1)--(0,-1)--(0,-2)--(5,-2)--(5,-3)--(0,-3)--(0,-4)--(5,-4),gray+linewidth(0.5)+miterjoin);
draw((1,-5)--(1,0)--(2,0)--(2,-5)--(3,-5)--(3,0)--(4,0)--(4,-5),gray+linewidth(0.5)+miterjoin);
draw((0,0)--(5,0)--(5,-5)--(0,-5)--cycle,black+linewidth(2.5)+miterjoin);
draw((0,-1)--(3,-1)--(3,-2)--(1,-2)--(1,-4)--(4,-4)--(4,-3)--(2,-3)--(2,-2),black+linewidth(2.5)+miterjoin);
draw((3,0)--(3,-1),black+linewidth(2.5)+miterjoin);
draw((1,-4)--(1,-5),black+linewidth(2.5)+miterjoin);
draw((4,-3)--(4,-1)--(5,-1),black+linewidth(2.5)+miterjoin);
[/asy]
[i]Proposed by Zixiang Zhou, Canada[/i]
2010 IFYM, Sozopol, 6
We are given the natural numbers $1=a_1,\, \, a_2,...,a_n$, for which
$a_i\leq a_{i+1}\leq 2a_i$
for $i=1,2,...,n-1$ and the sum $\sum_{i=1}^n a_i$ is even. Prove that these numbers can be partitioned into two groups with equal sum.
1992 IMO Longlists, 39
Let $n \geq 2$ be an integer. Find the minimum $k$ for which there exists a partition of $\{1, 2, . . . , k\}$ into $n$ subsets $X_1,X_2, \cdots , X_n$ such that the following condition holds:
for any $i, j, 1 \leq i < j \leq n$, there exist $x_i \in X_1, x_j \in X_2$ such that $|x_i - x_j | = 1.$
1987 IMO Longlists, 56
For any integer $r \geq 1$, determine the smallest integer $h(r) \geq 1$ such that for any partition of the set $\{1, 2, \cdots, h(r)\}$ into $r$ classes, there are integers $a \geq 0 \ ; 1 \leq x \leq y$, such that $a + x, a + y, a + x + y$ belong to the same class.
[i]Proposed by Romania[/i]
2020 GQMO, 3
We call a set of integers $\textit{special}$ if it has $4$ elements and can be partitioned into $2$ disjoint subsets $\{ a,b \}$ and $\{ c, d \}$ such that $ab - cd = 1$. For every positive integer $n$, prove that the set $\{ 1, 2, \dots, 4n \}$ cannot be partitioned into $n$ disjoint special sets.
[i]Proposed by Mohsen Jamali, Iran[/i]
Russian TST 2021, P1
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
2021 European Mathematical Cup, 4
Let $n$ be a positive integer. Morgane has coloured the integers $1,2,\ldots,n$. Each of them is coloured in exactly one colour. It turned out that for all positive integers $a$ and $b$ such that $a<b$ and $a+b \leqslant n$, at least two of the integers among $a$, $b$ and $a+b$ are of the same colour. Prove that there exists a colour that has been used for at least $2n/5$ integers. \\ \\
(Vincent Jugé)
2021 Latvia TST, 2.4
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]