Found problems: 133
1984 Tournament Of Towns, (066) A5
Let $p(n)$ be the number of partitions of the natural number $n$ into natural summands. The diversity of a partition is by definition the number of different summands in it. Denote by $q(n)$ the sum of the diversities of all the $p(n) $ partitions of $n$.
(For example, $p(4) = 5$, the five distinct partitions of $4$ being $4, 3 + 1, 2+2, 2 + 1 + 1, 1 + 1 + 1 + 1,$ and $g(4) =1 + 2+1+ 2+1 = 7$.)
Prove that, for all natural numbers $n$,
(a) $q(n)= 1 + P(1) + P(2) + p(3) + ...+ p(n -1)$,
(b) $q(n) < \sqrt{2n} p(n)$.
(AV Zelevinskiy, Moscow)
2018 India PRMO, 22
A positive integer $k$ is said to be [i]good [/i] if there exists a partition of $ \{1, 2, 3,..., 20\}$ into disjoint proper subsets such that the sum of the numbers in each subset of the partition is $k$. How many [i]good [/i] numbers are there?
2023 ISL, C6
Let $N$ be a positive integer, and consider an $N \times N$ grid. A [i]right-down path[/i] is a sequence of grid cells such that each cell is either one cell to the right of or one cell below the previous cell in the sequence. A [i]right-up path[/i] is a sequence of grid cells such that each cell is either one cell to the right of or one cell above the previous cell in the sequence.
Prove that the cells of the $N \times N$ grid cannot be partitioned into less than $N$ right-down or right-up paths. For example, the following partition of the $5 \times 5$ grid uses $5$ paths.
[asy]
size(4cm);
draw((5,-1)--(0,-1)--(0,-2)--(5,-2)--(5,-3)--(0,-3)--(0,-4)--(5,-4),gray+linewidth(0.5)+miterjoin);
draw((1,-5)--(1,0)--(2,0)--(2,-5)--(3,-5)--(3,0)--(4,0)--(4,-5),gray+linewidth(0.5)+miterjoin);
draw((0,0)--(5,0)--(5,-5)--(0,-5)--cycle,black+linewidth(2.5)+miterjoin);
draw((0,-1)--(3,-1)--(3,-2)--(1,-2)--(1,-4)--(4,-4)--(4,-3)--(2,-3)--(2,-2),black+linewidth(2.5)+miterjoin);
draw((3,0)--(3,-1),black+linewidth(2.5)+miterjoin);
draw((1,-4)--(1,-5),black+linewidth(2.5)+miterjoin);
draw((4,-3)--(4,-1)--(5,-1),black+linewidth(2.5)+miterjoin);
[/asy]
[i]Proposed by Zixiang Zhou, Canada[/i]
1978 IMO Longlists, 1
The set $M = \{1, 2, . . . , 2n\}$ is partitioned into $k$ nonintersecting subsets $M_1,M_2, \dots, M_k,$ where $n \ge k^3 + k.$ Prove that there exist even numbers $2j_1, 2j_2, \dots, 2j_{k+1}$ in $M$ that are in one and the same subset $M_i$ $(1 \le i \le k)$ such that the numbers $2j_1 - 1, 2j_2 - 1, \dots, 2j_{k+1} - 1$ are also in one and the same subset $M_j (1 \le j \le k).$
2009 Jozsef Wildt International Math Competition, W. 6
Prove that$$p (n)= 2+ \left (p (1) + \cdots + p\left ( \left [\frac {n}{2} \right ] + \chi_1 (n)\right ) + \left (p'_2(n) + \cdots + p' _{ \left [\frac {n}{2} \right ] - 1}(n)\right )\right )$$for every $n \in \mathbb {N}$ with $n>2$ where $\chi $ denotes the principal character Dirichlet modulo 2, i.e.$$ \chi _1 (n) = \begin{cases} 1 & \text{if } (n,2)=1 \\ 0 &\text{if } (n,2)>1 \end{cases} $$with $p (n) $ we denote number of possible partitions of $n $ and $p' _m(n) $ we denote the number of partitions of $n$ in exactly $m$ sumands.
1989 IMO Longlists, 68
Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that
[b]i.)[/b] each $ A_i$ contains 17 elements
[b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.
2019 Belarusian National Olympiad, 9.4
The sum of several (not necessarily different) positive integers not exceeding $10$ is equal to $S$.
Find all possible values of $S$ such that these numbers can always be partitioned into two groups with the sum of the numbers in each group not exceeding $70$.
[i](I. Voronovich)[/i]
1990 Romania Team Selection Test, 6
Prove that there are infinitely many n’s for which there exists a partition of $\{1,2,...,3n\}$ into subsets $\{a_1,...,a_n\}, \{b_1,...,b_n\}, \{c_1,...,c_n\}$ such that $a_i +b_i = c_i$ for all $i$, and prove that there are infinitely many $n$’s for which there is no such partition.
2007 IMO Shortlist, 4
Let $ A_0 \equal{} (a_1,\dots,a_n)$ be a finite sequence of real numbers. For each $ k\geq 0$, from the sequence $ A_k \equal{} (x_1,\dots,x_k)$ we construct a new sequence $ A_{k \plus{} 1}$ in the following way.
1. We choose a partition $ \{1,\dots,n\} \equal{} I\cup J$, where $ I$ and $ J$ are two disjoint sets, such that the expression
\[ \left|\sum_{i\in I}x_i \minus{} \sum_{j\in J}x_j\right|
\]
attains the smallest value. (We allow $ I$ or $ J$ to be empty; in this case the corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily.
2. We set $ A_{k \plus{} 1} \equal{} (y_1,\dots,y_n)$ where $ y_i \equal{} x_i \plus{} 1$ if $ i\in I$, and $ y_i \equal{} x_i \minus{} 1$ if $ i\in J$.
Prove that for some $ k$, the sequence $ A_k$ contains an element $ x$ such that $ |x|\geq\frac n2$.
[i]Author: Omid Hatami, Iran[/i]
1987 IMO Shortlist, 11
Find the number of partitions of the set $\{1, 2, \cdots, n\}$ into three subsets $A_1,A_2,A_3$, some of which may be empty, such that the following conditions are satisfied:
$(i)$ After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity.
$(ii)$ If $A_1,A_2,A_3$ are all nonempty, then in exactly one of them the minimal number is even .
[i]Proposed by Poland.[/i]
1970 IMO, 1
Find all positive integers $n$ such that the set $\{n,n+1,n+2,n+3,n+4,n+5\}$ can be partitioned into two subsets so that the product of the numbers in each subset is equal.
2019 Singapore Senior Math Olympiad, 4
Positive integers $m,n,k$ satisfy $1+2+3++...+n=mk$ and $m \ge n$.
Show that we can partite $\{1,2,3,...,n \}$ into $k$ subsets (Every element belongs to exact one of these $k$ subsets), such that the sum of elements in each subset is equal to $m$.
1978 IMO, 3
Let $0<f(1)<f(2)<f(3)<\ldots$ a sequence with all its terms positive$.$ The $n-th$ positive integer which doesn't belong to the sequence is $f(f(n))+1.$ Find $f(240).$
1989 IMO Shortlist, 22
Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that
[b]i.)[/b] each $ A_i$ contains 17 elements
[b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.
1970 IMO Longlists, 18
Find all positive integers $n$ such that the set $\{n,n+1,n+2,n+3,n+4,n+5\}$ can be partitioned into two subsets so that the product of the numbers in each subset is equal.
2001 Croatia Team Selection Test, 1
Consider $A = \{1, 2, ..., 16\}$. A partition of $A$ into nonempty sets $A_1, A_2,..., A_n$ is said to be good if none of the Ai contains elements $a, b, c$ (not necessarily distinct) such that $a = b + c$.
(a) Find a good partition $\{A_1, A_2, A_3, A_4\}$ of $A$.
(b) Prove that no partition $\{A_1, A_2, A_3\}$ of $A$ is good
2024 Brazil Team Selection Test, 3
Let $N$ be a positive integer, and consider an $N \times N$ grid. A [i]right-down path[/i] is a sequence of grid cells such that each cell is either one cell to the right of or one cell below the previous cell in the sequence. A [i]right-up path[/i] is a sequence of grid cells such that each cell is either one cell to the right of or one cell above the previous cell in the sequence.
Prove that the cells of the $N \times N$ grid cannot be partitioned into less than $N$ right-down or right-up paths. For example, the following partition of the $5 \times 5$ grid uses $5$ paths.
[asy]
size(4cm);
draw((5,-1)--(0,-1)--(0,-2)--(5,-2)--(5,-3)--(0,-3)--(0,-4)--(5,-4),gray+linewidth(0.5)+miterjoin);
draw((1,-5)--(1,0)--(2,0)--(2,-5)--(3,-5)--(3,0)--(4,0)--(4,-5),gray+linewidth(0.5)+miterjoin);
draw((0,0)--(5,0)--(5,-5)--(0,-5)--cycle,black+linewidth(2.5)+miterjoin);
draw((0,-1)--(3,-1)--(3,-2)--(1,-2)--(1,-4)--(4,-4)--(4,-3)--(2,-3)--(2,-2),black+linewidth(2.5)+miterjoin);
draw((3,0)--(3,-1),black+linewidth(2.5)+miterjoin);
draw((1,-4)--(1,-5),black+linewidth(2.5)+miterjoin);
draw((4,-3)--(4,-1)--(5,-1),black+linewidth(2.5)+miterjoin);
[/asy]
[i]Proposed by Zixiang Zhou, Canada[/i]
2025 Alborz Mathematical Olympiad, P3
Is it possible to partition three-dimensional space into tetrahedra (not necessarily regular) such that there exists a plane that intersects the edges of each tetrahedron at exactly 4 or 0 points?
Proposed by Arvin Taheri
2015 Bosnia Herzegovina Team Selection Test, 5
Let $N$ be a positive integer. It is given set of weights which satisfies following conditions:
$i)$ Every weight from set has some weight from $1,2,...,N$;
$ii)$ For every $i\in {1,2,...,N}$ in given set there exists weight $i$;
$iii)$ Sum of all weights from given set is even positive integer.
Prove that set can be partitioned into two disjoint sets which have equal weight
1969 IMO Shortlist, 36
$(HUN 3)$ In the plane $4000$ points are given such that each line passes through at most $2$ of these points. Prove that there exist $1000$ disjoint quadrilaterals in the plane with vertices at these points.
2002 Kurschak Competition, 3
Prove that the edges of a complete graph with $3^n$ vertices can be partitioned into disjoint cycles of length $3$.
2018 Saudi Arabia BMO TST, 3
The partition of $2n$ positive integers into $n$ pairs is called [i]square-free[/i] if the product of numbers in each pair is not a perfect square.Prove that if for $2n$ distinct positive integers, there exists one square-free partition, then there exists at least $n!$ square-free partitions.
1978 Romania Team Selection Test, 3
Let $ p $ be a natural number and let two partitions $ \mathcal{A} =\left\{ A_1,A_2,...,A_p\right\} ,\mathcal{B}=\left\{ B_1,B_2,...B_p\right\} $ of a finite set $ \mathcal{M} . $ Knowing that, whenever an element of $ \mathcal{A} $ doesn´t have any elements in common with another of $ \mathcal{B} , $ it holds that the number of elements of these two is greater than $ p, $ prove that $ \big| \mathcal{M}\big|\ge\frac{1}{2}\left( 1+p^2\right) . $ Can equality hold?
1972 IMO Shortlist, 4
Let $n_1, n_2$ be positive integers. Consider in a plane $E$ two disjoint sets of points $M_1$ and $M_2$ consisting of $2n_1$ and $2n_2$ points, respectively, and such that no three points of the union $M_1 \cup M_2$ are collinear. Prove that there exists a straightline $g$ with the following property: Each of the two half-planes determined by $g$ on $E$ ($g$ not being included in either) contains exactly half of the points of $M_1$ and exactly half of the points of $M_2.$
1988 IMO Shortlist, 20
Find the least natural number $ n$ such that, if the set $ \{1,2, \ldots, n\}$ is arbitrarily divided into two non-intersecting subsets, then one of the subsets contains 3 distinct numbers such that the product of two of them equals the third.