This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 663

1986 Tournament Of Towns, (120) 2

Square $ABCD$ and circle $O$ intersect in eight points, forming four curvilinear triangles, $AEF , BGH , CIJ$ and $DKL$ ($EF , GH, IJ$ and $KL$ are arcs of the circle) . Prove that (a) The sum of lengths of $EF$ and $IJ$ equals the sum of the lengths of $GH$ and $KL$. (b) The sum of the perimeters of curvilinear triangles $AEF$ and $CIJ$ equals the sum of the perimeters of the curvilinear triangles $BGH$ and $DKL$. ( V . V . Proizvolov , Moscow)

2023 AMC 10, 4

A quadrilateral has all integer sides lengths, a perimeter of $26$, and one side of length $4$. What is the greatest possible length of one side of this quadrilateral? $\textbf{(A)}~9\qquad\textbf{(B)}~10\qquad\textbf{(C)}~11\qquad\textbf{(D)}~12\qquad\textbf{(E)}~13$

2002 Junior Balkan Team Selection Tests - Moldova, 7

The side of the square $ABCD$ has a length equal to $1$. On the sides $(BC)$ ¸and $(CD)$ take respectively the arbitrary points $M$ and $N$ so that the perimeter of the triangle $MCN$ is equal to $2$. a) Determine the measure of the angle $\angle MAN$. b) If the point $P$ is the foot of the perpendicular taken from point $A$ to the line $MN$, determine the locus of the points $P$.

1978 Romania Team Selection Test, 4

Diagonals $ AC $ and $ BD $ of a convex quadrilateral $ ABCD $ intersect a point $ O. $ Prove that if triangles $ OAB,OBC,OCD $ and $ ODA $ have the same perimeter, then $ ABCD $ is a rhombus. What happens if $ O $ is some other point inside the quadrilateral?

PEN H Problems, 27

Prove that there exist infinitely many positive integers $n$ such that $p=nr$, where $p$ and $r$ are respectively the semi-perimeter and the inradius of a triangle with integer side lengths.

May Olympiad L1 - geometry, 1995.4

We have four white equilateral triangles of $3$ cm on each side and join them by their sides to obtain a triangular base pyramid. At each edge of the pyramid we mark two red dots that divide it into three equal parts. Number the red dots, so that when you scroll them in the order they were numbered, result a path with the smallest possible perimeter. How much does that path measure?

2010 Today's Calculation Of Integral, 662

In $xyz$ space, let $A$ be the solid generated by a rotation of the figure, enclosed by the curve $y=2-2x^2$ and the $x$-axis about the $y$-axis. (1) When the solid is cut by the plane $x=a\ (|a|\leq 1)$, find the inequality which expresses the figure of the cross-section. (2) Denote by $L$ the distance between the point $(a,\ 0,\ 0)$ and the point on the perimeter of the cross-section found in (1), find the maximum value of $L$. (3) Find the volume of the solid by a rotation of the solid $A$ about the $x$-axis. [i]1987 Sophia University entrance exam/Science and Technology[/i]

1987 Traian Lălescu, 1.4

Let $ ABCD $ be a regular tetahedron and $ M,N $ be middlepoints for $ AD, $ respectively, $ BC. $ Through a point $ P $ that is on segment $ MN, $ passes a plane perpendicular on $ MN, $ and meets the sides $ AB,AC,CD,BD $ of the tetahedron at $ E,F,G, $ respectively, $ H. $ [b]a)[/b] Prove that the perimeter of the quadrilateral $ EFGH $ doesn't depend on $ P. $ [b]b)[/b] Determine the maximum area of $ EFGH $ (depending on a side of the tetahedron).

1988 Bundeswettbewerb Mathematik, 3

Prove that all acute-angled triangles with the equal altitudes $h_c$ and the equal angles $\gamma$ have orthic triangles with same perimeters.

2019 Yasinsky Geometry Olympiad, p4

In the triangle $ABC$, the side $BC$ is equal to $a$. Point $F$ is midpoint of $AB$, $I$ is the point of intersection of the bisectors of triangle $ABC$. It turned out that $\angle AIF = \angle ACB$. Find the perimeter of the triangle $ABC$. (Grigory Filippovsky)

1999 USAMTS Problems, 4

We say a triangle in the coordinate plane is [i]integral[/i] if its three vertices have integer coordinates and if its three sides have integer lengths. (a) Find an integral triangle with perimeter of $42$. (b) Is there an integral triangle with perimeter of $43$?

1960 AMC 12/AHSME, 15

Triangle I is equilateral with side $A$, perimeter $P$, area $K$, and circumradius $R$ (radius of the circumscribed circle). Triangle II is equilateral with side $a$, perimeter $p$, area $k$, and circumradius $r$. If $A$ is different from $a$, then: $ \textbf{(A)}\ P:p = R:r \text{ } \text{only sometimes} \qquad\textbf{(B)}\ P:p = R:r \text{ } \text{always}\qquad$ $\textbf{(C)}\ P:p = K:k \text{ } \text{only sometimes} \qquad\textbf{(D)}\ R:r = K:k \text{ } \text{always}\qquad$ $\textbf{(E)}\ R:r = K:k \text{ } \text{only sometimes} $

2022 AMC 12/AHSME, 10

Regular hexagon $ABCDEF$ has side length $2$. Let $G$ be the midpoint of $\overline{AB}$, and let $H$ be the midpoint of $\overline{DE}$. What is the perimeter of $GCHF$? $ \textbf{(A)}\ 4\sqrt3 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 4\sqrt5 \qquad \textbf{(D)}\ 4\sqrt7 \qquad \textbf{(E)}\ 12$