Found problems: 175
2024 SG Originals, Q1
Find all permutations $(a_1, a_2, \cdots, a_{2024})$ of $(1, 2, \cdots, 2024)$ such that there exists a polynomial $P$ with integer coefficients satisfying $P(i) = a_i$ for each $i = 1, 2, \cdots, 2024$.
2019 Caucasus Mathematical Olympiad, 3
Find all positive integers $n\geqslant 2$ such that there exists a permutation $a_1$, $a_2$, $a_3$, \ldots, $a_{2n}$ of the numbers $1, 2, 3, \ldots, 2n$ satisfying $$a_1\cdot a_2 + a_3\cdot a_4 + \ldots + a_{2n-3} \cdot a_{2n-2} = a_{2n-1} \cdot a_{2n}.$$
2016 IMAR Test, 1
Fix an integer $n \ge 3$ and let $a_0 = n$. Does there exist a permutation $a_1, a_2,..., a_{n-1}$ of the first $n-1$ positive integers such that $\Sigma_{j=0}^{k-1} a_j$ is divisible by $a_k$ for all indices $k < n$?
2024 Junior Balkan Team Selection Tests - Romania, P1
Let $n\geqslant 3$ be an integer and $a_1,a_2,\ldots,a_n$ be pairwise distinct positive real numbers with the property that there exists a permutation $b_1,b_2,\ldots,b_n$ of these numbers such that\[\frac{a_1}{b_1}=\frac{a_2}{b_2}=\cdots=\frac{a_{n-1}}{b_{n-1}}\neq 1.\]Prove that there exist $a,b>0$ such that $\{a_1,a_2,\ldots,a_n\}=\{ab,ab^2,\ldots,ab^n\}.$
[i]Cristi Săvescu[/i]
2022 Singapore MO Open, Q4
Let $n,k$, $1\le k\le n$ be fixed integers. Alice has $n$ cards in a row, where the card has position $i$ has the label $i+k$ (or $i+k-n$ if $i+k>n$). Alice starts by colouring each card either red or blue. Afterwards, she is allowed to make several moves, where each move consists of choosing two cards of different colours and swapping them. Find the minimum number of moves she has to make (given that she chooses the colouring optimally) to put the cards in order (i.e. card $i$ is at position $i$).
NOTE: edited from original phrasing, which was ambiguous.
1988 Tournament Of Towns, (200) 3
The integers $1 , 2,..., n$ are rearranged in such a way that if the integer $k, 1 \le k\le n$, is not the first term, then one of the integers $k + 1$ or $k-1$ occurs to the left of $k$ . How many arrangements of the integers $1 , 2,..., n$ satisfy this condition?
(A. Andjans, Riga)
2006 Germany Team Selection Test, 3
Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n$.
Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have
\[ n\mid a_i \minus{} b_i \minus{} c_i
\]
[i]Proposed by Ricky Liu & Zuming Feng, USA[/i]
2018 Turkey Team Selection Test, 3
A Retired Linguist (R.L.) writes in the first move a word consisting of $n$ letters, which are all different. In each move, he determines the maximum $i$, such that the word obtained by reversing the first $i$ letters of the last word hasn't been written before, and writes this new word. Prove that R.L. can make $n!$ moves.
2005 Czech And Slovak Olympiad III A, 6
Decide whether for every arrangement of the numbers $1,2,3, . . . ,15$ in a sequence one can color these numbers with at most four different colors in such a way that the numbers of each color form a monotone subsequence.
KoMaL A Problems 2017/2018, A. 727
For any finite sequence $(x_1,\ldots,x_n)$, denote by $N(x_1,\ldots,x_n)$ the number of ordered index pairs $(i,j)$ for which $1 \le i<j\le n$ and $x_i=x_j$. Let $p$ be an odd prime, $1 \le n<p$, and let $a_1,a_2,\ldots,a_n$ and $b_1,b_2,\ldots,b_n$ be arbitrary residue classes modulo $p$. Prove that there exists a permutation $\pi$ of the indices $1,2,\ldots,n$ for which
\[N(a_1+b_{\pi(1)},a_2+b_{\pi(2)},\ldots,a_n+b_{\pi(n)})\le \min(N(a_1,a_2,\ldots,a_n),N(b_1,b_2,\ldots,b_n)).\]
1969 IMO Longlists, 31
$(GDR 3)$ Find the number of permutations $a_1, \cdots, a_n$ of the set $\{1, 2, . . ., n\}$ such that $|a_i - a_{i+1}| \neq 1$ for all $i = 1, 2, . . ., n - 1.$ Find a recurrence formula and evaluate the number of such permutations for $n \le 6.$
2015 Romania Team Selection Tests, 3
Let $n$ be a positive integer . If $\sigma$ is a permutation of the first $n$ positive integers , let $S(\sigma)$ be the set of all distinct sums of the form $\sum_{i=k}^{l} \sigma(i)$ where $1 \leq k \leq l \leq n$ .
[b](a)[/b] Exhibit a permutation $\sigma$ of the first $n$ positive integers such that $|S(\sigma)|\geq \left \lfloor{\frac{(n+1)^2}{4}}\right \rfloor $.
[b](b)[/b] Show that $|S(\sigma)|>\frac{n\sqrt{n}}{4\sqrt{2}}$ for all permutations $\sigma$ of the first $n$ positive integers .
2010 ELMO Shortlist, 1
For a permutation $\pi$ of $\{1,2,3,\ldots,n\}$, let $\text{Inv}(\pi)$ be the number of pairs $(i,j)$ with $1 \leq i < j \leq n$ and $\pi(i) > \pi(j)$.
[list=1]
[*] Given $n$, what is $\sum \text{Inv}(\pi)$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?
[*] Given $n$, what is $\sum \left(\text{Inv}(\pi)\right)^2$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?[/list]
[i]Brian Hamrick.[/i]
2006 Germany Team Selection Test, 3
Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n$.
Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have
\[ n\mid a_i \minus{} b_i \minus{} c_i
\]
[i]Proposed by Ricky Liu & Zuming Feng, USA[/i]
KoMaL A Problems 2019/2020, A. 760
An illusionist and his assistant are about to perform the following magic trick.
Let $k$ be a positive integer. A spectator is given $n=k!+k-1$ balls numbered $1,2,…,n$. Unseen by the illusionist, the spectator arranges the balls into a sequence as he sees fit. The assistant studies the sequence, chooses some block of $k$ consecutive balls, and covers them under her scarf. Then the illusionist looks at the newly obscured sequence and guesses the precise order of the $k$ balls he does not see.
Devise a strategy for the illusionist and the assistant to follow so that the trick always works.
(The strategy needs to be constructed explicitly. For instance, it should be possible to implement the strategy, as described by the solver, in the form of a computer program that takes $k$ and the obscured sequence as input and then runs in time polynomial in $n$. A mere proof that an appropriate strategy exists does not qualify as a complete solution.)
1966 IMO Shortlist, 51
Consider $n$ students with numbers $1, 2, \ldots, n$ standing in the order $1, 2, \ldots, n.$ Upon a command, any of the students either remains on his place or switches his place with another student. (Actually, if student $A$ switches his place with student $B,$ then $B$ cannot switch his place with any other student $C$ any more until the next command comes.)
Is it possible to arrange the students in the order $n,1, 2, \ldots, n-1$ after two commands ?
2020 Argentina National Olympiad, 5
Determine the highest possible value of:
$$S = a_1a_2a_3 + a_4a_5a_6 +... + a_{2017}a_{2018}a_{2019} + a_{2020}$$
where $(a_1, a_2, a_3,..., a_{2020})$ is a permutation of $(1,2,3,..., 2020)$.
Clarification: In $S$, each term, except the last one, is the multiplication of three numbers.
2023 Austrian MO Regional Competition, 3
Determine all natural numbers $n \ge 2$ with the property that there are two permutations $(a_1, a_2,... , a_n) $ and $(b_1, b_2,... , b_n)$ of the numbers $1, 2,..., n$ such that $(a_1 + b_1, a_2 +b_2,..., a_n + b_n)$ are consecutive natural numbers.
[i](Walther Janous)[/i]
2018 IMAR Test, 2
Let $P$ be a non-zero polynomial with non-negative real coefficients, let $N$ be a positive integer, and let $\sigma$ be a permutation of the set $\{1,2,...,n\}$. Determine the least value the sum
\[\sum_{i=1}^{n}\frac{P(x_i^2)}{P(x_ix_{\sigma(i)})}\] may achieve, as $x_1,x_2,...,x_n$ run through the set of positive real numbers.
[i]Fedor Petrov[/i]
2009 Serbia National Math Olympiad, 4
Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which
\[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\]
Find the number of elements of the set $A_n$.
[i]Proposed by Vidan Govedarica, Serbia[/i]
2024 Romania National Olympiad, 4
We consider an integer $n \ge 3,$ the set $S=\{1,2,3,\ldots,n\}$ and the set $\mathcal{F}$ of the functions from $S$ to $S.$ We say that $\mathcal{G} \subset \mathcal{F}$ is a generating set for $\mathcal{H} \subset \mathcal{F}$ if any function in $\mathcal{H}$ can be represented as a composition of functions from $\mathcal{G}.$
a) Let the functions $a:S \to S,$ $a(n-1)=n,$ $a(n)=n-1$ and $a(k)=k$ for $k \in S \setminus \{n-1,n\}$ and $b:S \to S,$ $b(n)=1$ and $b(k)=k+1$ for $k \in S \setminus \{n\}.$ Prove that $\{a,b\}$ is a generating set for the set $\mathcal{B}$ of bijective functions of $\mathcal{F}.$
b) Prove that the smallest number of elements that a generating set of $\mathcal{F}$ has is $3.$
2009 Junior Balkan Team Selection Tests - Romania, 4
Show that there exist (at least) a rearrangement $a_0, a_1, a_2,..., a_{63}$ of the numbers $0,1, 2,..., 63$, such that $a_i - a_j \ne a_j - a_k$, for any $i < j < k \in \{0,1, 2,..., 63\}$.
2016 Iran MO (3rd Round), 1
Find the number of all $\text{permutations}$ of $\left \{ 1,2,\cdots ,n \right \}$ like $p$ such that there exists a unique $i \in \left \{ 1,2,\cdots ,n \right \}$ that :
$$p(p(i)) \geq i$$
2016 Indonesia MO, 8
Determine with proof, the number of permutations $a_1,a_2,a_3,...,a_{2016}$ of $1,2,3,...,2016$ such that the value of $|a_i-i|$ is fixed for all $i=1,2,3,...,2016$, and its value is an integer multiple of $3$.
2022 Philippine MO, 2
The PMO Magician has a special party game. There are $n$ chairs, labelled $1$ to $n$. There are $n$ sheets of paper, labelled $1$ to $n$.
[list]
[*] On each chair, she attaches exactly one sheet whose number does not match the number on the chair.
[*] She then asks $n$ party guests to sit on the chairs so that each chair has exactly one occupant.
[*] Whenever she claps her hands, each guest looks at the number on the sheet attached to their current chair, and moves to the chair labelled with that number.
[/list]
Show that if $1 < m \leq n$, where $m$ is not a prime power, it is always possible for the PMO Magician to choose which sheet to attach to each chair so that everyone returns to their original seats after exactly $m$ claps.