This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 533

2018 Sharygin Geometry Olympiad, 8

Let $I$ be the incenter of fixed triangle $ABC$, and $D$ be an arbitrary point on $BC$. The perpendicular bisector of $AD$ meets $BI,CI$ at $F$ and $E$ respectively. Find the locus of orthocenters of $\triangle IEF$ as $D$ varies.

2004 Turkey Team Selection Test, 2

Let $\triangle ABC$ be an acute triangle, $O$ be its circumcenter, and $D$ be a point different that $A$ and $C$ on the smaller $AC$ arc of its circumcircle. Let $P$ be a point on $[AB]$ satisfying $\widehat{ADP} = \widehat {OBC}$ and $Q$ be a point on $[BC]$ satisfying $\widehat{CDQ}=\widehat {OBA}$. Show that $\widehat {DPQ} = \widehat {DOC}$.

2012 Pre - Vietnam Mathematical Olympiad, 3

Let $ABC$ be a triangle with height $AH$. $P$ lies on the circle over 3 midpoint of $AB,BC,CA$ ($P \notin BC$). Prove that the line connect 2 center of $(PBH)$ and $(PCH)$ go through a fixed point. (where $(XYZ)$ be a circumscribed circle of triangle $XYZ$)

2003 Tuymaada Olympiad, 2

In a quadrilateral $ABCD$ sides $AB$ and $CD$ are equal, $\angle A=150^\circ,$ $\angle B=44^\circ,$ $\angle C=72^\circ.$ Perpendicular bisector of the segment $AD$ meets the side $BC$ at point $P.$ Find $\angle APD.$ [i]Proposed by F. Bakharev[/i]

2024 India Regional Mathematical Olympiad, 3

Let $ABC$ be an equilateral triangle. Suppose $D$ is the point on $BC$ such that $BD+DC = 1:3$. Let the perpendicular bisector of $AD$ intersect $AB,AC$ at $E,F$ respectively. Prove that $49 \cdot [BDE] = 25 \cdot [CDF]$, where $[XYZ]$ denotes the area of the triangle $XYZ$.

2012 India Regional Mathematical Olympiad, 5

Let $AL$ and $BK$ be the angle bisectors in a non-isosceles triangle $ABC,$ where $L$ lies on $BC$ and $K$ lies on $AC.$ The perpendicular bisector of $BK$ intersects the line $AL$ at $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK.$ Prove that $LN=NA.$

2000 IMO Shortlist, 6

Let $ ABCD$ be a convex quadrilateral. The perpendicular bisectors of its sides $ AB$ and $ CD$ meet at $ Y$. Denote by $ X$ a point inside the quadrilateral $ ABCD$ such that $ \measuredangle ADX \equal{} \measuredangle BCX < 90^{\circ}$ and $ \measuredangle DAX \equal{} \measuredangle CBX < 90^{\circ}$. Show that $ \measuredangle AYB \equal{} 2\cdot\measuredangle ADX$.

2012 Junior Balkan Team Selection Tests - Moldova, 3

Let $ ABC $ be an isosceles triangle with $ AC=BC $ . Take points $ D $ on side $AC$ and $E$ on side $BC$ and $ F $ the intersection of bisectors of angles $ DEB $ and $ADE$ such that $ F$ lies on side $AB$. Prove that $F$ is the midpoint of $AB$.

1993 Brazil National Olympiad, 4

$ABCD$ is a convex quadrilateral with \[\angle BAC = 30^\circ \]\[\angle CAD = 20^\circ\]\[\angle ABD = 50^\circ\]\[\angle DBC = 30^\circ\] If the diagonals intersect at $P$, show that $PC = PD$.

2008 China Team Selection Test, 1

Let $ P$ be the the isogonal conjugate of $ Q$ with respect to triangle $ ABC$, and $ P,Q$ are in the interior of triangle $ ABC$. Denote by $ O_{1},O_{2},O_{3}$ the circumcenters of triangle $ PBC,PCA,PAB$, $ O'_{1},O'_{2},O'_{3}$ the circumcenters of triangle $ QBC,QCA,QAB$, $ O$ the circumcenter of triangle $ O_{1}O_{2}O_{3}$, $ O'$ the circumcenter of triangle $ O'_{1}O'_{2}O'_{3}$. Prove that $ OO'$ is parallel to $ PQ$.

2014 Sharygin Geometry Olympiad, 7

A parallelogram $ABCD$ is given. The perpendicular from $C$ to $CD$ meets the perpendicular from $A$ to $BD$ at point $F$, and the perpendicular from $B$ to $AB$ meets the perpendicular bisector to $AC$ at point $E$. Find the ratio in which side $BC$ divides segment $EF$.

2008 China Team Selection Test, 1

Let $ P$ be the the isogonal conjugate of $ Q$ with respect to triangle $ ABC$, and $ P,Q$ are in the interior of triangle $ ABC$. Denote by $ O_{1},O_{2},O_{3}$ the circumcenters of triangle $ PBC,PCA,PAB$, $ O'_{1},O'_{2},O'_{3}$ the circumcenters of triangle $ QBC,QCA,QAB$, $ O$ the circumcenter of triangle $ O_{1}O_{2}O_{3}$, $ O'$ the circumcenter of triangle $ O'_{1}O'_{2}O'_{3}$. Prove that $ OO'$ is parallel to $ PQ$.

2011 USAMTS Problems, 4

A $\emph{luns}$ with vertices $X$ and $Y$ is a region bounded by two circular arcs meeting at the endpoints $X$ and $Y$. Let $A$, $B$, and $V$ be points such that $\angle AVB=75^\circ$, $AV=\sqrt{2}$ and $BV=\sqrt{3}$. Let $\mathcal{L}$ be the largest area luns with vertices $A$ and $B$ that does not intersect the lines $VA$ or $VB$ in any points other than $A$ and $B$. Define $k$ as the area of $\mathcal{L}$. Find the value \[ \dfrac {k}{(1+\sqrt{3})^2}. \]

JBMO Geometry Collection, 1999

Let $ABC$ be a triangle with $AB=AC$. Also, let $D\in[BC]$ be a point such that $BC>BD>DC>0$, and let $\mathcal{C}_1,\mathcal{C}_2$ be the circumcircles of the triangles $ABD$ and $ADC$ respectively. Let $BB'$ and $CC'$ be diameters in the two circles, and let $M$ be the midpoint of $B'C'$. Prove that the area of the triangle $MBC$ is constant (i.e. it does not depend on the choice of the point $D$). [i]Greece[/i]

2011 Indonesia TST, 3

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2003 National Olympiad First Round, 25

Let $ABC$ be an acute triangle and $O$ be its circumcenter. Let $D$ be the midpoint of $[AB]$. The circumcircle of $\triangle ADO$ meets $[AC]$ at $A$ and $E$. If $|AE|=7$, $|DE|=8$, and $m(\widehat{AOD}) = 45^\circ$, what is the area of $\triangle ABC$? $ \textbf{(A)}\ 56\sqrt 3 \qquad\textbf{(B)}\ 56 \sqrt 2 \qquad\textbf{(C)}\ 50 \sqrt 2 \qquad\textbf{(D)}\ 84 \qquad\textbf{(E)}\ \text{None of the preceding} $

1993 IberoAmerican, 2

Let $P$ and $Q$ be two distinct points in the plane. Let us denote by $m(PQ)$ the segment bisector of $PQ$. Let $S$ be a finite subset of the plane, with more than one element, that satisfies the following properties: (i) If $P$ and $Q$ are in $S$, then $m(PQ)$ intersects $S$. (ii) If $P_1Q_1, P_2Q_2, P_3Q_3$ are three diferent segments such that its endpoints are points of $S$, then, there is non point in $S$ such that it intersects the three lines $m(P_1Q_1)$, $m(P_2Q_2)$, and $m(P_3Q_3)$. Find the number of points that $S$ may contain.

2006 Team Selection Test For CSMO, 2

Let $AA_1$ and $BB_1$ be the altitudes of an acute-angled, non-isosceles triangle $ABC$. Also, let $A_0$ and $B_0$ be the midpoints of its sides $BC$ and $CA$, respectively. The line $A_1B_1$ intersects the line $A_0B_0$ at a point $C'$. Prove that the line $CC'$ is perpendicular to the Euler line of the triangle $ABC$ (this is the line that joins the orthocenter and the circumcenter of the triangle $ABC$).

2000 Spain Mathematical Olympiad, 3

Two circles $C_1$ and $C_2$ with the respective radii $r_1$ and $r_2$ intersect in $A$ and $B.$ A variable line $r$ through $B$ meets $C_1$ and $C_2$ again at $P_r$ and $Q_r$ respectively. Prove that there exists a point $M,$ depending only on $C_1$ and $C_2,$ such that the perpendicular bisector of each segment $P_rQ_r$ passes through $M.$

2014 Bulgaria National Olympiad, 3

Let $ABCD$ be a quadrilateral inscribed in a circle $k$. $AC$ and $BD$ meet at $E$. The rays $\overrightarrow{CB}, \overrightarrow{DA}$ meet at $F$. Prove that the line through the incenters of $\triangle ABE\,,\, \triangle ABF$ and the line through the incenters of $\triangle CDE\,,\, \triangle CDF$ meet at a point lying on the circle $k$. [i]Proposed by N. Beluhov[/i]

2000 239 Open Mathematical Olympiad, 7

The perpendicular bisectors of the sides AB and BC of a triangle ABC meet the lines BC and AB at the points X and Z, respectively. The angle bisectors of the angles XAC and ZCA intersect at a point B'. Similarly, define two points C' and A'. Prove that the points A', B', C' lie on one line through the incenter I of triangle ABC. [i]Extension:[/i] Prove that the points A', B', C' lie on the line OI, where O is the circumcenter and I is the incenter of triangle ABC. Darij

2005 German National Olympiad, 2

According to the estimated number of participants who gave a correct solution, this was the hardest (!) problem from today's paper. So here is this great German killer - be warned! Given a circle k and three pairwisely distinct points A, B, C on this circle. Let h and g be the perpendiculars to the line BC at the points B and C. The perpendicular bisector of the segment AB meets the line h at a point F; the perpendicular bisector of the segment AC meets the line g at a point G. Prove that the product $BF\cdot CG$ is independent from the position of the point A, as long as the points B and C stay fixed. The actual problem behind the problem: Why on hell should the points B and C stay fixed? Darij

1998 USAMO, 2

Let ${\cal C}_1$ and ${\cal C}_2$ be concentric circles, with ${\cal C}_2$ in the interior of ${\cal C}_1$. From a point $A$ on ${\cal C}_1$ one draws the tangent $AB$ to ${\cal C}_2$ ($B\in {\cal C}_2$). Let $C$ be the second point of intersection of $AB$ and ${\cal C}_1$, and let $D$ be the midpoint of $AB$. A line passing through $A$ intersects ${\cal C}_2$ at $E$ and $F$ in such a way that the perpendicular bisectors of $DE$ and $CF$ intersect at a point $M$ on $AB$. Find, with proof, the ratio $AM/MC$.

2002 India IMO Training Camp, 13

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2010 JBMO Shortlist, 2

Let $ABC$ be acute-angled triangle . A circle $\omega_1(O_1,R_1)$ passes through points $B$ and $C$ and meets the sides $AB$ and $AC$ at points $D$ and $E$ ,respectively . Let $\omega_2(O_2,R_2)$ be the circumcircle of triangle $ADE$ . Prove that $O_1O_2$ is equal to the circumradius of triangle $ABC$ .