This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 396

2005 Hong kong National Olympiad, 1

On a planet there are $3\times2005!$ aliens and $2005$ languages. Each pair of aliens communicates with each other in exactly one language. Show that there are $3$ aliens who communicate with each other in one common language.

2005 District Olympiad, 4

Prove that no matter how we number the vertices of a cube with integers from 1 to 8, there exists two opposite vertices in the cube (e.g. they are the endpoints of a large diagonal of the cube), united through a broken line formed with 3 edges of the cube, such that the sum of the 4 numbers written in the vertices of this broken lines is at least 21.

2011 Preliminary Round - Switzerland, 3

On a blackboard, there are $11$ positive integers. Show that one can choose some (maybe all) of these numbers and place "$+$" and "$-$" in between such that the result is divisible by $2011$.

1969 IMO Shortlist, 58

$(SWE 1)$ Six points $P_1, . . . , P_6$ are given in $3-$dimensional space such that no four of them lie in the same plane. Each of the line segments $P_jP_k$ is colored black or white. Prove that there exists one triangle $P_jP_kP_l$ whose edges are of the same color.

2011 Iran Team Selection Test, 12

Suppose that $f : \mathbb{N} \rightarrow \mathbb{N}$ is a function for which the expression $af(a)+bf(b)+2ab$ for all $a,b \in \mathbb{N}$ is always a perfect square. Prove that $f(a)=a$ for all $a \in \mathbb{N}$.

2006 USAMO, 1

Let $p$ be a prime number and let $s$ be an integer with $0 < s < p.$ Prove that there exist integers $m$ and $n$ with $0 < m < n < p$ and \[ \left \{\frac{sm}{p} \right\} < \left \{\frac{sn}{p} \right \} < \frac{s}{p} \] if and only if $s$ is not a divisor of $p-1$. Note: For $x$ a real number, let $\lfloor x \rfloor$ denote the greatest integer less than or equal to $x$, and let $\{x\} = x - \lfloor x \rfloor$ denote the fractional part of x.

1993 Flanders Math Olympiad, 1

The 20 pupils in a class each send 10 cards to 10 (different) class members. [size=92][i][note: you cannot send a card to yourself.][/i][/size] (a) Show at least 2 pupils sent each other a card. (b) Now suppose we had $n$ pupils sending $m$ cards each. For which $(m,n)$ is the above true? (That is, find minimal $m(n)$ or maximal $n(m)$)

2007 Federal Competition For Advanced Students, Part 2, 1

Let $ M$ be the set of all polynomials $ P(x)$ with pairwise distinct integer roots, integer coefficients and all absolut values of the coefficients less than $ 2007$. Which is the highest degree among all the polynomials of the set $ M$?

2002 All-Russian Olympiad, 4

From the interval $(2^{2n},2^{3n})$ are selected $2^{2n-1}+1$ odd numbers. Prove that there are two among the selected numbers, none of which divides the square of the other.

1999 IberoAmerican, 3

Let $P_1,P_2,\dots,P_n$ be $n$ distinct points over a line in the plane ($n\geq2$). Consider all the circumferences with diameters $P_iP_j$ ($1\leq{i,j}\leq{n}$) and they are painted with $k$ given colors. Lets call this configuration a ($n,k$)-cloud. For each positive integer $k$, find all the positive integers $n$ such that every possible ($n,k$)-cloud has two mutually exterior tangent circumferences of the same color.

2012 USA TSTST, 5

A rational number $x$ is given. Prove that there exists a sequence $x_0, x_1, x_2, \ldots$ of rational numbers with the following properties: (a) $x_0=x$; (b) for every $n\ge1$, either $x_n = 2x_{n-1}$ or $x_n = 2x_{n-1} + \textstyle\frac{1}{n}$; (c) $x_n$ is an integer for some $n$.

PEN P Problems, 21

Let $A$ be the set of positive integers of the form $a^2 +2b^2$, where $a$ and $b$ are integers and $b \neq 0$. Show that if $p$ is a prime number and $p^2 \in A$, then $p \in A$.

2014 Contests, 2

Prove that among any $16$ perfect cubes we can always find two cubes whose difference is divisible by $91$.

2005 Croatia National Olympiad, 3

Show that there is a unique positive integer which consists of the digits $2$ and $5$, having $2005$ digits and divisible by $2^{2005}$.

2004 Germany Team Selection Test, 3

We consider graphs with vertices colored black or white. "Switching" a vertex means: coloring it black if it was formerly white, and coloring it white if it was formerly black. Consider a finite graph with all vertices colored white. Now, we can do the following operation: Switch a vertex and simultaneously switch all of its neighbours (i. e. all vertices connected to this vertex by an edge). Can we, just by performing this operation several times, obtain a graph with all vertices colored black? [It is assumed that our graph has no loops (a [i]loop[/i] means an edge connecting one vertex with itself) and no multiple edges (a [i]multiple edge[/i] means a pair of vertices connected by more than one edge).]

2007 Iran Team Selection Test, 2

Let $A$ be the largest subset of $\{1,\dots,n\}$ such that for each $x\in A$, $x$ divides at most one other element in $A$. Prove that \[\frac{2n}3\leq |A|\leq \left\lceil \frac{3n}4\right\rceil. \]

PEN Q Problems, 2

Prove that there is no nonconstant polynomial $f(x)$ with integral coefficients such that $f(n)$ is prime for all $n \in \mathbb{N}$.

1969 IMO Longlists, 58

$(SWE 1)$ Six points $P_1, . . . , P_6$ are given in $3-$dimensional space such that no four of them lie in the same plane. Each of the line segments $P_jP_k$ is colored black or white. Prove that there exists one triangle $P_jP_kP_l$ whose edges are of the same color.

2012 ELMO Shortlist, 5

Prove that if $m,n$ are relatively prime positive integers, $x^m-y^n$ is irreducible in the complex numbers. (A polynomial $P(x,y)$ is irreducible if there do not exist nonconstant polynomials $f(x,y)$ and $g(x,y)$ such that $P(x,y) = f(x,y)g(x,y)$ for all $x,y$.) [i]David Yang.[/i]

2012 Germany Team Selection Test, 1

Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20. [i]Proposed by Luxembourg[/i]

1988 USAMO, 3

A function $f(S)$ assigns to each nine-element subset of $S$ of the set $\{1,2,\ldots, 20\}$ a whole number from $1$ to $20$. Prove that regardless of how the function $f$ is chosen, there will be a ten-element subset $T\subset\{1,2,\ldots, 20\}$ such that $f(T - \{k\})\neq k$ for all $k\in T$.

2010 Contests, 2

Let $n > 1$ be an integer. Find, with proof, all sequences $x_1 , x_2 , \ldots , x_{n-1}$ of positive integers with the following three properties: (a). $x_1 < x_2 < \cdots < x_{n-1}$ ; (b). $x_i + x_{n-i} = 2n$ for all $i = 1, 2, \ldots , n - 1$; (c). given any two indices $i$ and $j$ (not necessarily distinct) for which $x_i + x_j < 2n$, there is an index $k$ such that $x_i + x_j = x_k$.

2006 Mathematics for Its Sake, 1

Let be the points $ K,L,M $ on the sides $ BC,CA,AB, $ respectively, of a triangle $ ABC. $ Show that at least one of the areas of the triangles $ MAL,KBM,LCK $ doesn't surpass a fourth of the area of $ ABC. $

2002 Moldova National Olympiad, 3

There are $ 16$ persons in a company, each of which likes exactly $ 8$ other persons. Show that there exist two persons who like each other.

1994 Hungary-Israel Binational, 4

An [i]$ n\minus{}m$ society[/i] is a group of $ n$ girls and $ m$ boys. Prove that there exists numbers $ n_0$ and $ m_0$ such that every [i]$ n_0\minus{}m_0$ society[/i] contains a subgroup of five boys and five girls with the following property: either all of the boys know all of the girls or none of the boys knows none of the girls.