This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85

1997 Nordic, 3

Let $A, B, C$, and $D$ be four different points in the plane. Three of the line segments $AB, AC, AD, BC, BD$, and $CD$ have length $a$. The other three have length $b$, where $b > a$. Determine all possible values of the quotient $\frac{b}{a}$. .

1996 Akdeniz University MO, 4

$25$ point in a plane and for all $3$ points, we find $2$ points such that this $2$ points' distance less than $1$ $cm$ . Prove that at least $13$ points in a circle of radius $1$ $cm$.

1985 IMO Longlists, 41

A set of $1985$ points is distributed around the circumference of a circle and each of the points is marked with $1$ or $-1$. A point is called “good” if the partial sums that can be formed by starting at that point and proceeding around the circle for any distance in either direction are all strictly positive. Show that if the number of points marked with $-1$ is less than $662$, there must be at least one good point.

1975 IMO, 5

Can there be drawn on a circle of radius $1$ a number of $1975$ distinct points, so that the distance (measured on the chord) between any two points (from the considered points) is a rational number?

1975 IMO Shortlist, 15

Can there be drawn on a circle of radius $1$ a number of $1975$ distinct points, so that the distance (measured on the chord) between any two points (from the considered points) is a rational number?

1992 IMO Longlists, 73

Let $\{A_n | n = 1, 2, \cdots \} $ be a set of points in the plane such that for each $n$, the disk with center $A_n$ and radius $2^n$ contains no other point $A_j$ . For any given positive real numbers $a < b$ and $R$, show that there is a subset $G$ of the plane satisfying: [b](i)[/b] the area of $G$ is greater than or equal to $R$; [b](ii) [/b]for each point $P$ in $G$, $a < \sum_{n=1}^{\infty} \frac{1}{|A_nP|} <b.$

1995 IMO Shortlist, 3

Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} \plus{} r_{j} \plus{} r_{k}$.

2009 Germany Team Selection Test, 2

Let $ k$ and $ n$ be integers with $ 0\le k\le n \minus{} 2$. Consider a set $ L$ of $ n$ lines in the plane such that no two of them are parallel and no three have a common point. Denote by $ I$ the set of intersections of lines in $ L$. Let $ O$ be a point in the plane not lying on any line of $ L$. A point $ X\in I$ is colored red if the open line segment $ OX$ intersects at most $ k$ lines in $ L$. Prove that $ I$ contains at least $ \dfrac{1}{2}(k \plus{} 1)(k \plus{} 2)$ red points. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1989 IMO, 3

Let $ n$ and $ k$ be positive integers and let $ S$ be a set of $ n$ points in the plane such that [b]i.)[/b] no three points of $ S$ are collinear, and [b]ii.)[/b] for every point $ P$ of $ S$ there are at least $ k$ points of $ S$ equidistant from $ P.$ Prove that: \[ k < \frac {1}{2} \plus{} \sqrt {2 \cdot n} \]

1998 China Team Selection Test, 2

Let $n$ be a natural number greater than 2. $l$ is a line on a plane. There are $n$ distinct points $P_1$, $P_2$, …, $P_n$ on $l$. Let the product of distances between $P_i$ and the other $n-1$ points be $d_i$ ($i = 1, 2,$ …, $n$). There exists a point $Q$, which does not lie on $l$, on the plane. Let the distance from $Q$ to $P_i$ be $C_i$ ($i = 1, 2,$ …, $n$). Find $S_n = \sum_{i = 1}^{n} (-1)^{n-i} \frac{c_i^2}{d_i}$.

1992 French Mathematical Olympiad, Problem 1

Let $\Delta$ be a convex figure in a plane $\mathcal P$. Given a point $A\in\mathcal P$, to each pair $(M,N)$ of points in $\Delta$ we associate the point $m\in\mathcal P$ such that $\overrightarrow{Am}=\frac{\overrightarrow{MN}}2$ and denote by $\delta_A(\Delta)$ the set of all so obtained points $m$. (a) i. Prove that $\delta_A(\Delta)$ is centrally symmetric. ii. Under which conditions is $\delta_A(\Delta)=\Delta$? iii. Let $B,C$ be points in $\mathcal P$. Find a transformation which sends $\delta_B(\Delta)$ to $\delta_C(\Delta)$. (b) Determine $\delta_A(\Delta)$ if i. $\Delta$ is a set in the plane determined by two parallel lines. ii. $\Delta$ is bounded by a triangle. iii. $\Delta$ is a semi-disk. (c) Prove that in the cases $b.2$ and $b.3$ the lengths of the boundaries of $\Delta$ and $\delta_A(\Delta)$ are equal.

1969 IMO Shortlist, 60

$(SWE 3)$ Find the natural number $n$ with the following properties: $(1)$ Let $S = \{P_1, P_2, \cdots\}$ be an arbitrary finite set of points in the plane, and $r_j$ the distance from $P_j$ to the origin $O.$ We assign to each $P_j$ the closed disk $D_j$ with center $P_j$ and radius $r_j$. Then some $n$ of these disks contain all points of $S.$ $(2)$ $n$ is the smallest integer with the above property.

1970 IMO Shortlist, 12

Given $100$ coplanar points, no three collinear, prove that at most $70\%$ of the triangles formed by the points have all angles acute.

1989 IMO Longlists, 87

Consider in a plane $ P$ the points $ O,A_1,A_2,A_3,A_4$ such that \[ \sigma(OA_iA_j) \geq 1 \quad \forall i, j \equal{} 1, 2, 3, 4, i \neq j.\] where $ \sigma(OA_iA_j)$ is the area of triangle $ OA_iA_j.$ Prove that there exists at least one pair $ i_0, j_0 \in \{1, 2, 3, 4\}$ such that \[ \sigma(OA_iA_j) \geq \sqrt{2}.\]

1965 IMO Shortlist, 6

In a plane a set of $n\geq 3$ points is given. Each pair of points is connected by a segment. Let $d$ be the length of the longest of these segments. We define a diameter of the set to be any connecting segment of length $d$. Prove that the number of diameters of the given set is at most $n$.

1990 IMO Longlists, 7

$A$ and $B$ are two points in the plane $\alpha$, and line $r$ passes through points $A, B$. There are $n$ distinct points $P_1, P_2, \ldots, P_n$ in one of the half-plane divided by line $r$. Prove that there are at least $\sqrt n$ distinct values among the distances $AP_1, AP_2, \ldots, AP_n, BP_1, BP_2, \ldots, BP_n.$

1992 IMO, 2

Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$. [hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]

1993 IMO Shortlist, 2

Show that there exists a finite set $A \subset \mathbb{R}^2$ such that for every $X \in A$ there are points $Y_1, Y_2, \ldots, Y_{1993}$ in $A$ such that the distance between $X$ and $Y_i$ is equal to 1, for every $i.$

1986 IMO Shortlist, 11

Let $f(n)$ be the least number of distinct points in the plane such that for each $k = 1, 2, \cdots, n$ there exists a straight line containing exactly $k$ of these points. Find an explicit expression for $f(n).$ [i]Simplified version.[/i] Show that $f(n)=\left[\frac{n+1}{2}\right]\left[\frac{n+2}{2}\right].$ Where $[x]$ denoting the greatest integer not exceeding $x.$

1969 IMO Longlists, 68

$(USS 5)$ Given $5$ points in the plane, no three of which are collinear, prove that we can choose $4$ points among them that form a convex quadrilateral.

1969 IMO Longlists, 60

$(SWE 3)$ Find the natural number $n$ with the following properties: $(1)$ Let $S = \{P_1, P_2, \cdots\}$ be an arbitrary finite set of points in the plane, and $r_j$ the distance from $P_j$ to the origin $O.$ We assign to each $P_j$ the closed disk $D_j$ with center $P_j$ and radius $r_j$. Then some $n$ of these disks contain all points of $S.$ $(2)$ $n$ is the smallest integer with the above property.

1967 IMO Shortlist, 5

In the plane a point $O$ is and a sequence of points $P_1, P_2, P_3, \ldots$ are given. The distances $OP_1, OP_2, OP_3, \ldots$ are $r_1, r_2, r_3, \ldots$ Let $\alpha$ satisfies $0 < \alpha < 1.$ Suppose that for every $n$ the distance from the point $P_n$ to any other point of the sequence is $\geq r^{\alpha}_n.$ Determine the exponent $\beta$, as large as possible such that for some $C$ independent of $n$ \[r_n \geq Cn^{\beta}, n = 1,2, \ldots\]

1978 Germany Team Selection Test, 1

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$

1967 IMO Longlists, 20

In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.

2008 Peru Iberoamerican Team Selection Test, P3

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]