This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85

2008 IMO Shortlist, 5

Let $ k$ and $ n$ be integers with $ 0\le k\le n \minus{} 2$. Consider a set $ L$ of $ n$ lines in the plane such that no two of them are parallel and no three have a common point. Denote by $ I$ the set of intersections of lines in $ L$. Let $ O$ be a point in the plane not lying on any line of $ L$. A point $ X\in I$ is colored red if the open line segment $ OX$ intersects at most $ k$ lines in $ L$. Prove that $ I$ contains at least $ \dfrac{1}{2}(k \plus{} 1)(k \plus{} 2)$ red points. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2009 Germany Team Selection Test, 1

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

1989 IMO Shortlist, 20

Let $ n$ and $ k$ be positive integers and let $ S$ be a set of $ n$ points in the plane such that [b]i.)[/b] no three points of $ S$ are collinear, and [b]ii.)[/b] for every point $ P$ of $ S$ there are at least $ k$ points of $ S$ equidistant from $ P.$ Prove that: \[ k < \frac {1}{2} \plus{} \sqrt {2 \cdot n} \]

1983 IMO Longlists, 35

Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]

1973 IMO, 2

Establish if there exists a finite set $M$ of points in space, not all situated in the same plane, so that for any straight line $d$ which contains at least two points from M there exists another straight line $d'$, parallel with $d,$ but distinct from $d$, which also contains at least two points from $M$.

1971 IMO Longlists, 8

Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.

2009 Belarus Team Selection Test, 2

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

1970 IMO, 3

Given $100$ coplanar points, no three collinear, prove that at most $70\%$ of the triangles formed by the points have all angles acute.

1969 IMO Shortlist, 36

$(HUN 3)$ In the plane $4000$ points are given such that each line passes through at most $2$ of these points. Prove that there exist $1000$ disjoint quadrilaterals in the plane with vertices at these points.

1967 IMO Longlists, 19

The $n$ points $P_1,P_2, \ldots, P_n$ are placed inside or on the boundary of a disk of radius 1 in such a way that the minimum distance $D_n$ between any two of these points has its largest possible value $D_n.$ Calculate $D_n$ for $n = 2$ to 7. and justify your answer.

1972 IMO Shortlist, 4

Let $n_1, n_2$ be positive integers. Consider in a plane $E$ two disjoint sets of points $M_1$ and $M_2$ consisting of $2n_1$ and $2n_2$ points, respectively, and such that no three points of the union $M_1 \cup M_2$ are collinear. Prove that there exists a straightline $g$ with the following property: Each of the two half-planes determined by $g$ on $E$ ($g$ not being included in either) contains exactly half of the points of $M_1$ and exactly half of the points of $M_2.$

2009 Germany Team Selection Test, 2

Let $ k$ and $ n$ be integers with $ 0\le k\le n \minus{} 2$. Consider a set $ L$ of $ n$ lines in the plane such that no two of them are parallel and no three have a common point. Denote by $ I$ the set of intersections of lines in $ L$. Let $ O$ be a point in the plane not lying on any line of $ L$. A point $ X\in I$ is colored red if the open line segment $ OX$ intersects at most $ k$ lines in $ L$. Prove that $ I$ contains at least $ \dfrac{1}{2}(k \plus{} 1)(k \plus{} 2)$ red points. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2009 Brazil Team Selection Test, 3

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

1999 IMO Shortlist, 2

A circle is called a [b]separator[/b] for a set of five points in a plane if it passes through three of these points, it contains a fourth point inside and the fifth point is outside the circle. Prove that every set of five points such that no three are collinear and no four are concyclic has exactly four separators.

1989 IMO Longlists, 66

Let $ n$ and $ k$ be positive integers and let $ S$ be a set of $ n$ points in the plane such that [b]i.)[/b] no three points of $ S$ are collinear, and [b]ii.)[/b] for every point $ P$ of $ S$ there are at least $ k$ points of $ S$ equidistant from $ P.$ Prove that: \[ k < \frac {1}{2} \plus{} \sqrt {2 \cdot n} \]

1996 IMO Shortlist, 4

Determine whether or nor there exist two disjoint infinite sets $ A$ and $ B$ of points in the plane satisfying the following conditions: a.) No three points in $ A \cup B$ are collinear, and the distance between any two points in $ A \cup B$ is at least 1. b.) There is a point of $ A$ in any triangle whose vertices are in $ B,$ and there is a point of $ B$ in any triangle whose vertices are in $ A.$

2010 Indonesia TST, 2

Find maximal numbers of planes, such there are $6$ points and 1) $4$ or more points lies on every plane. 2) No one line passes through $4$ points.

1978 Germany Team Selection Test, 1

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$

1971 IMO, 2

Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.

2011 IMO Shortlist, 3

Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A [i]windmill[/i] is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the [i]pivot[/i] $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely. Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times. [i]Proposed by Geoffrey Smith, United Kingdom[/i]

1967 IMO Shortlist, 3

The $n$ points $P_1,P_2, \ldots, P_n$ are placed inside or on the boundary of a disk of radius 1 in such a way that the minimum distance $D_n$ between any two of these points has its largest possible value $D_n.$ Calculate $D_n$ for $n = 2$ to 7. and justify your answer.

2009 Greece Team Selection Test, 4

Given are $N$ points on the plane such that no three of them are collinear,which are coloured red,green and black.We consider all the segments between these points and give to each segment a [i]"value"[/i] according to the following conditions: [b]i.[/b]If at least one of the endpoints of a segment is black then the segment's [i]"value"[/i] is $0$. [b]ii.[/b]If the endpoints of the segment have the same colour,re or green,then the segment's [i]"value"[/i] is $1$. [b]iii.[/b]If the endpoints of the segment have different colours but none of them is black,then the segment's [i]"value"[/i] is $-1$. Determine the minimum possible sum of the [i]"values"[/i] of the segments.

1969 IMO Longlists, 11

$(BUL 5)$ Let $Z$ be a set of points in the plane. Suppose that there exists a pair of points that cannot be joined by a polygonal line not passing through any point of $Z.$ Let us call such a pair of points unjoinable. Prove that for each real $r > 0$ there exists an unjoinable pair of points separated by distance $r.$

1968 IMO Shortlist, 20

Given $n \ (n \geq 3)$ points in space such that every three of them form a triangle with one angle greater than or equal to $120^\circ$, prove that these points can be denoted by $A_1,A_2, \ldots,A_n$ in such a way that for each $i, j, k, 1 \leq i < j < k \leq n$, angle $A_iA_jA_k$ is greater than or equal to $120^\circ . $

1977 IMO Longlists, 59

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$