Found problems: 85
1989 IMO Shortlist, 28
Consider in a plane $ P$ the points $ O,A_1,A_2,A_3,A_4$ such that \[ \sigma(OA_iA_j) \geq 1 \quad \forall i, j \equal{} 1, 2, 3, 4, i \neq j.\] where $ \sigma(OA_iA_j)$ is the area of triangle $ OA_iA_j.$ Prove that there exists at least one pair $ i_0, j_0 \in \{1, 2, 3, 4\}$ such that \[ \sigma(OA_iA_j) \geq \sqrt{2}.\]
1992 IMO Shortlist, 10
Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$.
[hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]
2009 Greece Team Selection Test, 4
Given are $N$ points on the plane such that no three of them are collinear,which are coloured red,green and black.We consider all the segments between these points and give to each segment a [i]"value"[/i] according to the following conditions:
[b]i.[/b]If at least one of the endpoints of a segment is black then the segment's [i]"value"[/i] is $0$.
[b]ii.[/b]If the endpoints of the segment have the same colour,re or green,then the segment's [i]"value"[/i] is $1$.
[b]iii.[/b]If the endpoints of the segment have different colours but none of them is black,then the segment's [i]"value"[/i] is $-1$.
Determine the minimum possible sum of the [i]"values"[/i] of the segments.
1975 IMO Shortlist, 15
Can there be drawn on a circle of radius $1$ a number of $1975$ distinct points, so that the distance (measured on the chord) between any two points (from the considered points) is a rational number?
2009 Germany Team Selection Test, 2
Let $ k$ and $ n$ be integers with $ 0\le k\le n \minus{} 2$. Consider a set $ L$ of $ n$ lines in the plane such that no two of them are parallel and no three have a common point. Denote by $ I$ the set of intersections of lines in $ L$. Let $ O$ be a point in the plane not lying on any line of $ L$. A point $ X\in I$ is colored red if the open line segment $ OX$ intersects at most $ k$ lines in $ L$. Prove that $ I$ contains at least $ \dfrac{1}{2}(k \plus{} 1)(k \plus{} 2)$ red points.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
2009 Belarus Team Selection Test, 2
In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements.
[i]Proposed by Jorge Tipe, Peru[/i]
1971 IMO Shortlist, 14
A broken line $A_1A_2 \ldots A_n$ is drawn in a $50 \times 50$ square, so that the distance from any point of the square to the broken line is less than $1$. Prove that its total length is greater than $1248.$
2008 Peru Iberoamerican Team Selection Test, P3
In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements.
[i]Proposed by Jorge Tipe, Peru[/i]
1998 IMO Shortlist, 6
Ten points are marked in the plane so that no three of them lie on a line. Each pair of points is connected with a segment. Each of these segments is painted with one of $k$ colors, in such a way that for any $k$ of the ten points, there are $k$ segments each joining two of them and no two being painted with the same color. Determine all integers $k$, $1\leq k\leq 10$, for which this is possible.
1967 IMO Longlists, 20
In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.
1996 Akdeniz University MO, 4
$25$ point in a plane and for all $3$ points, we find $2$ points such that this $2$ points' distance less than $1$ $cm$ . Prove that at least $13$ points in a circle of radius $1$ $cm$.
1969 IMO Longlists, 11
$(BUL 5)$ Let $Z$ be a set of points in the plane. Suppose that there exists a pair of points that cannot be joined by a polygonal line not passing through any point of $Z.$ Let us call such a pair of points unjoinable. Prove that for each real $r > 0$ there exists an unjoinable pair of points separated by distance $r.$
1995 IMO Shortlist, 3
Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} \plus{} r_{j} \plus{} r_{k}$.
1992 IMO Longlists, 38
Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$.
[hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]
1997 Nordic, 3
Let $A, B, C$, and $D$ be four different points in the plane. Three of the line segments $AB, AC, AD, BC, BD$,
and $CD$ have length $a$. The other three have length $b$, where $b > a$. Determine all possible values of the quotient $\frac{b}{a}$.
.
1969 IMO Longlists, 60
$(SWE 3)$ Find the natural number $n$ with the following properties:
$(1)$ Let $S = \{P_1, P_2, \cdots\}$ be an arbitrary finite set of points in the plane, and $r_j$ the distance from $P_j$ to the origin $O.$ We assign to each $P_j$ the closed disk $D_j$ with center $P_j$ and radius $r_j$. Then some $n$ of these disks contain all points of $S.$
$(2)$ $n$ is the smallest integer with the above property.
1983 IMO Shortlist, 17
Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that
\[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]
1967 IMO Longlists, 52
In the plane a point $O$ is and a sequence of points $P_1, P_2, P_3, \ldots$ are given. The distances $OP_1, OP_2, OP_3, \ldots$ are $r_1, r_2, r_3, \ldots$ Let $\alpha$ satisfies $0 < \alpha < 1.$ Suppose that for every $n$ the distance from the point $P_n$ to any other point of the sequence is $\geq r^{\alpha}_n.$ Determine the exponent $\beta$, as large as possible such that for some $C$ independent of $n$
\[r_n \geq Cn^{\beta}, n = 1,2, \ldots\]
1967 IMO Shortlist, 2
In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.
1991 IMO Shortlist, 8
$ S$ be a set of $ n$ points in the plane. No three points of $ S$ are collinear. Prove that there exists a set $ P$ containing $ 2n \minus{} 5$ points satisfying the following condition: In the interior of every triangle whose three vertices are elements of $ S$ lies a point that is an element of $ P.$
1971 IMO Shortlist, 2
Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.
2010 Indonesia TST, 2
Find maximal numbers of planes, such there are $6$ points and
1) $4$ or more points lies on every plane.
2) No one line passes through $4$ points.
1992 IMO, 2
Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$.
[hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]
1968 IMO Shortlist, 20
Given $n \ (n \geq 3)$ points in space such that every three of them form a triangle with one angle greater than or equal to $120^\circ$, prove that these points can be denoted by $A_1,A_2, \ldots,A_n$ in such a way that for each $i, j, k, 1 \leq i < j < k \leq n$, angle $A_iA_jA_k$ is greater than or equal to $120^\circ . $
2009 Brazil Team Selection Test, 3
In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements.
[i]Proposed by Jorge Tipe, Peru[/i]