This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2005 Taiwan TST Round 1, 1

Let $f(x)=Ax^2+Bx+C$, $g(x)=ax^2+bx+c$ be two quadratic polynomial functions with real coefficients that satisfy the relation \[|f(x)| \ge |g(x)|\] for all real $x$. Prove that $|b^2-4ac| \le |B^2-4AC|.$ My solution was nearly complete...

2013 Online Math Open Problems, 30

Let $P(t) = t^3+27t^2+199t+432$. Suppose $a$, $b$, $c$, and $x$ are distinct positive reals such that $P(-a)=P(-b)=P(-c)=0$, and \[ \sqrt{\frac{a+b+c}{x}} = \sqrt{\frac{b+c+x}{a}} + \sqrt{\frac{c+a+x}{b}} + \sqrt{\frac{a+b+x}{c}}. \] If $x=\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m+n$. [i]Proposed by Evan Chen[/i]

2006 Iran Team Selection Test, 4

Let $n$ be a fixed natural number. Find all $n$ tuples of natural pairwise distinct and coprime numbers like $a_1,a_2,\ldots,a_n$ such that for $1\leq i\leq n$ we have \[ a_1+a_2+\ldots+a_n|a_1^i+a_2^i+\ldots+a_n^i \]

2008 ITest, 80

Let \[p(x)=x^{2008}+x^{2007}+x^{2006}+\cdots+x+1,\] and let $r(x)$ be the polynomial remainder when $p(x)$ is divided by $x^4+x^3+2x^2+x+1$. Find the remainder when $|r(2008)|$ is divided by $1000$.

1985 Traian Lălescu, 1.3

Find all functions $ f:\mathbb{Q}\longrightarrow\mathbb{Q} $ with the property that $$ f\left( p(x)\right) =p\left( f(x)\right) ,\quad\forall x\in\mathbb{Q} , $$ for all integer polynomials $ p. $

2002 Spain Mathematical Olympiad, Problem 1

Find all the polynomials $P(t)$ of one variable that fullfill the following for all real numbers $x$ and $y$: $P(x^2-y^2) = P(x+y)P(x-y)$.

1998 Belarus Team Selection Test, 2

Let $ p$ be a prime number and $ f$ an integer polynomial of degree $ d$ such that $ f(0) = 0,f(1) = 1$ and $ f(n)$ is congruent to $ 0$ or $ 1$ modulo $ p$ for every integer $ n$. Prove that $ d\geq p - 1$.

PEN N Problems, 4

Show that if an infinite arithmetic progression of positive integers contains a square and a cube, it must contain a sixth power.

2021 European Mathematical Cup, 4

Find all positive integers $d$ for which there exist polynomials $P(x)$ and $Q(x)$ with real coefficients such that degree of $P$ equals $d$ and $$P(x)^2+1=(x^2+1)Q(x)^2.$$

2000 Putnam, 3

Let $f(t) = \displaystyle\sum_{j=1}^{N} a_j \sin (2\pi jt)$, where each $a_j$ is areal and $a_N$ is not equal to $0$. Let $N_k$ denote the number of zeroes (including multiplicites) of $\dfrac{d^k f}{dt^k}$. Prove that \[ N_0 \le N_1 \le N_2 \le \cdots \text { and } \lim_{k \rightarrow \infty} N_k = 2N. \] [color=green][Only zeroes in [0, 1) should be counted.][/color]

2014-2015 SDML (High School), 8

Consider the polynomial $$P\left(t\right)=t^3-29t^2+212t-399.$$ Find the product of all positive integers $n$ such that $P\left(n\right)$ is the sum of the digits of $n$.

2004 Harvard-MIT Mathematics Tournament, 4

Let $f(x)=\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(x))))))))$, and suppose that the number $a$ satisfies the equation $a=\cos a$. Express $f'(a)$ as a polynomial in $a$.

2016 Saudi Arabia IMO TST, 2

Find all pairs of polynomials $P(x),Q(x)$ with integer coefficients such that $P(Q(x)) = (x - 1)(x - 2)...(x - 9)$ for all real numbers $x$

2019 Estonia Team Selection Test, 4

Let us call a real number $r$ [i]interesting[/i], if $r = a + b\sqrt2$ for some integers a and b. Let $A(x)$ and $B(x)$ be polynomial functions with interesting coefficients for which the constant term of $B(x)$ is $1$, and $Q(x)$ be a polynomial function with real coefficients such that $A(x) = B(x) \cdot Q(x)$. Prove that the coefficients of $Q(x)$ are interesting.

1985 IMO Longlists, 79

Let $a, b$, and $c$ be real numbers such that \[\frac{1}{bc-a^2} + \frac{1}{ca-b^2}+\frac{1}{ab-c^2} = 0.\] Prove that \[\frac{a}{(bc-a^2)^2} + \frac{b}{(ca-b^2)^2}+\frac{c}{(ab-c^2)^2} = 0.\]

2004 Iran MO (3rd Round), 30

Find all polynomials $ p\in\mathbb Z[x]$ such that $ (m,n)\equal{}1\Rightarrow (p(m),p(n))\equal{}1$

2014 Indonesia MO Shortlist, A6

Determine all polynomials with integral coefficients $P(x)$ such that if $a,b,c$ are the sides of a right-angled triangle, then $P(a), P(b), P(c)$ are also the sides of a right-angled triangle. (Sides of a triangle are necessarily positive. Note that it's not necessary for the order of sides to be preserved; if $c$ is the hypotenuse of the first triangle, it's not necessary that $P(c)$ is the hypotenuse of the second triangle, and similar with the others.)

2020 LIMIT Category 1, 1

Find all polynomial $P(x)$ with degree $\leq n$and non negative coefficients such that $$P(x)P(\frac{1}{x})\leq P(1)^2$$ for all positive $x$. Here $n$ is a natuaral number

2008 AIME Problems, 7

Let $ r$, $ s$, and $ t$ be the three roots of the equation \[ 8x^3\plus{}1001x\plus{}2008\equal{}0.\]Find $ (r\plus{}s)^3\plus{}(s\plus{}t)^3\plus{}(t\plus{}r)^3$.

2023 IFYM, Sozopol, 5

Let $a$ and $b$ be natural numbers. Prove that the number of polynomials $P(x)$ with integer coefficients such that $|P(n)| \leq a^n$ for every natural number $n \geq b$ is finite.

2004 IMC, 1

Let $A$ be a real $4\times 2$ matrix and $B$ be a real $2\times 4$ matrix such that \[ AB = \left(% \begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ \end{array}% \right). \] Find $BA$.

LMT Team Rounds 2021+, 11

Find the number of degree $8$ polynomials $f (x)$ with nonnegative integer coefficients satisfying both $f (1) = 16$ and $f (-1) = 8$.

2019 AMC 12/AHSME, 17

Let $s_k$ denote the sum of the $\textit{k}$th powers of the roots of the polynomial $x^3-5x^2+8x-13$. In particular, $s_0=3$, $s_1=5$, and $s_2=9$. Let $a$, $b$, and $c$ be real numbers such that $s_{k+1} = a \, s_k + b \, s_{k-1} + c \, s_{k-2}$ for $k = 2$, $3$, $....$ What is $a+b+c$? $\textbf{(A)} \; -6 \qquad \textbf{(B)} \; 0 \qquad \textbf{(C)} \; 6 \qquad \textbf{(D)} \; 10 \qquad \textbf{(E)} \; 26$

2012 Indonesia TST, 1

Suppose $P(x,y)$ is a homogenous non-constant polynomial with real coefficients such that $P(\sin t, \cos t) = 1$ for all real $t$. Prove that $P(x,y) = (x^2+y^2)^k$ for some positive integer $k$. (A polynomial $A(x,y)$ with real coefficients and having a degree of $n$ is homogenous if it is the sum of $a_ix^iy^{n-i}$ for some real number $a_i$, for all integer $0 \le i \le n$.)

2013 AIME Problems, 5

The real root of the equation $8x^3 - 3x^2 - 3x - 1 = 0$ can be written in the form $\frac{\sqrt[3]a + \sqrt[3]b + 1}{c}$, where $a$, $b$, and $c$ are positive integers. Find $a+b+c$.