This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1995 China Team Selection Test, 2

$ A$ and $ B$ play the following game with a polynomial of degree at least 4: \[ x^{2n} \plus{} \_x^{2n \minus{} 1} \plus{} \_x^{2n \minus{} 2} \plus{} \ldots \plus{} \_x \plus{} 1 \equal{} 0 \] $ A$ and $ B$ take turns to fill in one of the blanks with a real number until all the blanks are filled up. If the resulting polynomial has no real roots, $ A$ wins. Otherwise, $ B$ wins. If $ A$ begins, which player has a winning strategy?

2011 Uzbekistan National Olympiad, 4

$A$ graph $G$ arises from $G_{1}$ and $G_{2}$ by pasting them along $S$ if $G$ has induced subgraphs $G_{1}$, $G_{2}$ with $G=G_{1}\cup G_{2}$ and $S$ is such that $S=G_{1}\cap G_{2}.$ A is graph is called [i]chordal[/i] if it can be constructed recursively by pasting along complete subgraphs, starting from complete subgraphs. For a graph $G(V,E)$ define its Hilbert polynomial $H_{G}(x)$ to be $H_{G}(x)=1+Vx+Ex^2+c(K_{3})x^3+c(K_{4})x^4+\ldots+c(K_{w(G)})x^{w(G)},$ where $c(K_{i})$ is the number of $i$-cliques in $G$ and $w(G)$ is the clique number of $G$. Prove that $H_{G}(-1)=0$ if and only if $G$ is chordal or a tree.

2017 Danube Mathematical Olympiad, 1

Find all polynomials $P(x)$ with integer coefficients such that $a^2+b^2-c^2$ divides $P(a)+P(b)-P(c)$, for all integers $a,b,c$.

1974 Czech and Slovak Olympiad III A, 4

Let $\mathcal M$ be the set of all polynomial functions $f$ of degree at most 3 such that \[\forall x\in[-1,1]:\ |f(x)|\le 1.\] Denote $a$ the (possibly zero) coefficient of $f$ at $x^3.$ Show that there is a positive number $k$ such that \[\forall f\in\mathcal M:\ |a|\le k\] and find the least $k$ with this property.

2006 ISI B.Math Entrance Exam, 2

Prove that there is no non-constant polynomial $P(x)$ with integer coefficients such that $P(n)$ is a prime number for all positive integers $n$.

2008 Costa Rica - Final Round, 3

Find all polinomials $ P(x)$ with real coefficients, such that $ P(\sqrt {3}(a \minus{} b)) \plus{} P(\sqrt {3}(b \minus{} c)) \plus{} P(\sqrt {3}(c \minus{} a)) \equal{} P(2a \minus{} b \minus{} c) \plus{} P( \minus{} a \plus{} 2b \minus{} c) \plus{} P( \minus{} a \minus{} b \plus{} 2c)$ for any $ a$,$ b$ and $ c$ real numbers

1997 Bulgaria National Olympiad, 1

Consider the polynomial $P_n(x) = \binom {n}{2}+\binom {n}{5}x+\binom {n}{8}x^2 + \cdots + \binom {n}{3k+2}x^{3k}$ where $n \ge 2$ is a natural number and $k = \left\lfloor \frac{n-2}{3} \right \rfloor$ [b](a)[/b] Prove that $P_{n+3}(x)=3P_{n+2}(x)-3P_{n+1}(x)+(x+1)P_n(x)$ [b](b)[/b] Find all integer numbers $a$ such that $P_n(a^3)$ is divisible by $3^{ \lfloor \frac{n-1}{2} \rfloor}$ for all $n \ge 2$

2020 Dürer Math Competition (First Round), P5

Let $p$ be prime and $ k > 1$ be a divisor of $p-1$. Show that if a polynomial of degree $k$ with integer coefficients attains every possible value modulo $ p$ that is $(0,1,\dots, p-1)$ at integer inputs then its leading coefficient must be divisible by $p$. [hide=Note]Note: the leading coefficient of a polynomial of degree d is the coefficient of the $x_d$ term.[/hide]

2024 Thailand TSTST, 12

We call polynomial $S(x)\in\mathbb{R}[x]$ sadeh whenever it's divisible by $x$ but not divisible by $x^2$. For the polynomial $P(x)\in\mathbb{R}[x]$ we know that there exists a sadeh polynomial $Q(x)$ such that $P(Q(x))-Q(2x)$ is divisible by $x^2$. Prove that there exists sadeh polynomial $R(x)$ such that $P(R(x))-R(2x)$ is divisible by $x^{1401}$.

2017 Costa Rica - Final Round, A1

Let $P (x)$ be a polynomial of degree $2n$, such that $P (k) =\frac{k}{k + 1}$ for $k = 0,...,2n$. Determine $P (2n + 1)$.

2018 China Team Selection Test, 5

Suppose the real number $\lambda \in \left( 0,1\right),$ and let $n$ be a positive integer. Prove that the modulus of all the roots of the polynomial $$f\left ( x \right )=\sum_{k=0}^{n}\binom{n}{k}\lambda^{k\left ( n-k \right )}x^{k}$$ are $1.$

2013 Kosovo National Mathematical Olympiad, 2

Find all integer $n$ such that $n-5$ divide $n^2+n-27$.

1991 IMO Shortlist, 21

Let $ f(x)$ be a monic polynomial of degree $ 1991$ with integer coefficients. Define $ g(x) \equal{} f^2(x) \minus{} 9.$ Show that the number of distinct integer solutions of $ g(x) \equal{} 0$ cannot exceed $ 1995.$

2017 Taiwan TST Round 3, 2

Prove that there exists a polynomial with integer coefficients satisfying the following conditions: (a)$f(x)=0$ has no rational root. (b) For any positive integer $n$, there always exists an integer $m$ such that $n\mid f(m)$.

2024 IFYM, Sozopol, 6

Let $P(x)$ be a polynomial in one variable with integer coefficients. Prove that the number of pairs $(m,n)$ of positive integers such that $2^n + P(n) = m!$, is finite.

2008 China Girls Math Olympiad, 2

Let $ \varphi(x) \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d$ be a polynomial with real coefficients. Given that $ \varphi(x)$ has three positive real roots and that $ \varphi(0) < 0$, prove that \[ 2b^3 \plus{} 9a^2d \minus{} 7abc \leq 0. \]

2006 Iran MO (3rd Round), 4

$p(x)$ is a real polynomial that for each $x\geq 0$, $p(x)\geq 0$. Prove that there are real polynomials $A(x),B(x)$ that $p(x)=A(x)^{2}+xB(x)^{2}$

1983 Putnam, B2

For positive integers $n$, let $C(n)$ be the number of representation of $n$ as a sum of nonincreasing powers of $2$, where no power can be used more than three times. For example, $C(8)=5$ since the representations of $8$ are: $$8,4+4,4+2+2,4+2+1+1,\text{ and }2+2+2+1+1.$$Prove or disprove that there is a polynomial $P(x)$ such that $C(n)=\lfloor P(n)\rfloor$ for all positive integers $n$.

1996 All-Russian Olympiad, 7

Does there exist a finite set $M$ of nonzero real numbers, such that for any natural number $n$ a polynomial of degree no less than $n$ with coeficients in $M$, all of whose roots are real and belong to $M$? [i]E. Malinnikova[/i]

1991 Putnam, A3

Find all real polynomials $ p(x)$ of degree $ n \ge 2$ for which there exist real numbers $ r_1 < r_2 < ... < r_n$ such that (i) $ p(r_i) \equal{} 0, 1 \le i \le n$, and (ii) $ p' \left( \frac {r_i \plus{} r_{i \plus{} 1}}{2} \right) \equal{} 0, 1 \le i \le n \minus{} 1$. [b]Follow-up:[/b] In terms of $ n$, what is the maximum value of $ k$ for which $ k$ consecutive real roots of a polynomial $ p(x)$ of degree $ n$ can have this property? (By "consecutive" I mean we order the real roots of $ p(x)$ and ignore the complex roots.) In particular, is $ k \equal{} n \minus{} 1$ possible for $ n \ge 3$?

2014 Putnam, 6

Let $n$ be a positive integer. What is the largest $k$ for which there exist $n\times n$ matrices $M_1,\dots,M_k$ and $N_1,\dots,N_k$ with real entries such that for all $i$ and $j,$ the matrix product $M_iN_j$ has a zero entry somewhere on its diagonal if and only if $i\ne j?$

2021 IMC, 7

Let $D \subseteq \mathbb{C}$ be an open set containing the closed unit disk $\{z : |z| \leq 1\}$. Let $f : D \rightarrow \mathbb{C}$ be a holomorphic function, and let $p(z)$ be a monic polynomial. Prove that $$ |f(0)| \leq \max_{|z|=1} |f(z)p(z)| $$

2000 Iran MO (3rd Round), 1

Let $n$ be a positive integer. Suppose $S$ is a set of ordered $n-\mbox{tuples}$ of nonnegative integers such that, whenever $(a_1,\dots,an)\in S$ and $b_i$ are nonnegative integers with$b_i\le a_i$, the $n-\text{tuple}$ $(b_1,\dots,b_n)$ is also in $S$. If $h_m$ is the number of elements of $S$ with the sum of components equal to$m$, prove that $h_m$ is a polynomial in $m$ for all sufficiently large$m$.

2011 Math Prize For Girls Problems, 18

The polynomial $P$ is a quadratic with integer coefficients. For every positive integer $n$, the integers $P(n)$ and $P(P(n))$ are relatively prime to $n$. If $P(3) = 89$, what is the value of $P(10)$?

1985 AIME Problems, 13

The numbers in the sequence 101, 104, 109, 116, $\dots$ are of the form $a_n = 100 + n^2$, where $n = 1$, 2, 3, $\dots$. For each $n$, let $d_n$ be the greatest common divisor of $a_n$ and $a_{n + 1}$. Find the maximum value of $d_n$ as $n$ ranges through the positive integers.