This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2011 Brazil Team Selection Test, 3

Let the real numbers $a,b,c,d$ satisfy the relations $a+b+c+d=6$ and $a^2+b^2+c^2+d^2=12.$ Prove that \[36 \leq 4 \left(a^3+b^3+c^3+d^3\right) - \left(a^4+b^4+c^4+d^4 \right) \leq 48.\] [i]Proposed by Nazar Serdyuk, Ukraine[/i]

1980 VTRMC, 4

Let $P(x)$ be any polynomial of degree at most $3.$ It can be shown that there are numbers $x_1$ and $x_2$ such that $\textstyle\int_{-1}^1 P(x) \ dx = P(x_1) + P(x_2),$ where $x_1$ and $x_2$ are independent of the polynomial $P.$ (a) Show that $x_1=-x_2.$ (b) Find $x_1$ and $x_2.$

1987 AMC 12/AHSME, 24

How many polynomial functions $f$ of degree $\ge 1$ satisfy \[ f(x^2)=[f(x)]^2=f(f(x)) \ ? \] $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ \text{finitely many but more than 2} \\ \qquad\textbf{(E)}\ \text{infinitely many} $

2009 India National Olympiad, 6

Let $ a,b,c$ be positive real numbers such that $ a^3 \plus{} b^3 \equal{} c^3$.Prove that: $ a^2 \plus{} b^2 \minus{} c^2 > 6(c \minus{} a)(c \minus{} b)$.

2006 German National Olympiad, 5

Let $x \neq 0$ be a real number satisfying $ax^2+bx+c=0$ with $a,b,c \in \mathbb{Z}$ obeying $|a|+|b|+|c| > 1$. Then prove \[ |x| \geq \frac{1}{|a|+|b|+|c|-1}. \]

2000 Manhattan Mathematical Olympiad, 1

Prove there exists no polynomial $f(x)$, with integer coefficients, such that $f(7) = 11$ and $f(11) = 13$.

1978 Miklós Schweitzer, 6

Suppose that the function $ g : (0,1) \rightarrow \mathbb{R}$ can be uniformly approximated by polynomials with nonnegative coefficients. Prove that $ g$ must be analytic. Is the statement also true for the interval $ (\minus{}1,0)$ instead of $ (0,1)$? [i]J. Kalina, L. Lempert[/i]

2008 Postal Coaching, 4

Tags: root , polynomial , algebra
Find all real numbers$p, q$ for which the polynomial equation $P(x) = x^4 - \frac{8p^2}{q}x^3 + 4qx^2 - 3px + p^2 = 0$ has four positive roots.

2023 Turkey Olympic Revenge, 3

Find all polynomials $P$ with integer coefficients such that $$s(x)=s(y) \implies s(|P(x)|)=s(|P(y)|).$$ for all $x,y\in \mathbb{N}$. Note: $s(x)$ denotes the sum of digits of $x$. [i]Proposed by Şevket Onur YILMAZ[/i]

2019 SAFEST Olympiad, 3

Let $m,n\geq 2$ be integers. Let $f(x_1,\dots, x_n)$ be a polynomial with real coefficients such that $$f(x_1,\dots, x_n)=\left\lfloor \frac{x_1+\dots + x_n}{m} \right\rfloor\text{ for every } x_1,\dots, x_n\in \{0,1,\dots, m-1\}.$$ Prove that the total degree of $f$ is at least $n$.

1980 Poland - Second Round, 4

Prove that if $ a $ and $ b $ are real numbers and the polynomial $ ax^3 - ax^2 + 9bx - b $ has three positive roots, then they are equal.

1956 Putnam, A4

Suppose that the $n$ times differentiable real function $f(x)$ has at least $n+1$ distinct zeros in the closed interval $[a,b]$ and that the polynomial $P(z)=z^n +c_{n-1}z^{n-1}+\ldots+c_1 x +c_0$ has only real zeroes. Show that $f^{(n)}(x)+ c_{n-1} f^{(n-1)}(x) +\ldots +c_1 f'(x)+ c_0 f(x)$ has at least one zero in $[a,b]$, where $f^{(n)}$ denotes the $n$-th derivative of $f.$

2011 IFYM, Sozopol, 6

Define a sequence {$a_n$}$^{\infty}_{n=1}$ by $a_1 = 4, a_2 = a_3 = (a^2 - 2)^2$ and $a_n = a_{n-1}.a_{n-2} - 2(a_{n-1} + a_{n-2}) - a_{n-3} + 8, n \ge 4$, where $a > 2$ is a natural number. Prove that for all $n$ the number $2 + \sqrt{a_n}$ is a perfect square.

1985 IMO Longlists, 92

Find a method by which one can compute the coefficients of $P(x) = x^6 + a_1x^5 + \cdots+ a_6$ from the roots of $P(x) = 0$ by performing not more than $15$ additions and $15$ multiplications.

2012 Purple Comet Problems, 5

Find the sum of the squares of the values $x$ that satisfy $\frac{1}{x} + \frac{2}{x+3}+\frac{3}{x+6} = 1$.

2009 Vietnam Team Selection Test, 2

Let a polynomial $ P(x) \equal{} rx^3 \plus{} qx^2 \plus{} px \plus{} 1$ $ (r > 0)$ such that the equation $ P(x) \equal{} 0$ has only one real root. A sequence $ (a_n)$ is defined by $ a_0 \equal{} 1, a_1 \equal{} \minus{} p, a_2 \equal{} p^2 \minus{} q, a_{n \plus{} 3} \equal{} \minus{} pa_{n \plus{} 2} \minus{} qa_{n \plus{} 1} \minus{} ra_n$. Prove that $ (a_n)$ contains an infinite number of nagetive real numbers.

2015 AMC 10, 12

Points $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ are distinct points on the graph of $y^2+x^4=2x^2y+1$. What is $|a-b|$? $ \textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi} $

2025 Bulgarian Winter Tournament, 11.4

Let $A$ be a set of $2025$ non-negative integers and $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ be a function with the following two properties: 1) For every two distinct positive integers $x,y$ there exists $a\in A$, such that $x-y$ divides $f(x+a) - f(y+a)$. 2) For every positive integer $N$ there exists a positive integer $t$ such that $f(x) \neq f(y)$ whenever $x,y \in [t, t+N]$ are distinct. Prove that there are infinitely many primes $p$ such that $p$ divides $f(x)$ for some positive integer $x$.

1971 AMC 12/AHSME, 20

The sum of the squares of the roots of the equation $x^2+2hx=3$ is $10$. The absolute value of $h$ is equal to $\textbf{(A) }-1\qquad\textbf{(B) }\textstyle\frac{1}{2}\qquad\textbf{(C) }\textstyle\frac{3}{2}\qquad\textbf{(D) }2\qquad \textbf{(E) }\text{None of these}$

2010 National Olympiad First Round, 27

Let $P$ be a polynomial with each root is real and each coefficient is either $1$ or $-1$. The degree of $P$ can be at most ? $ \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ \text{None} $

2024 Mathematical Talent Reward Programme, 9

Find the number of integer polynomials $P$ such that $P(x)^2 = P(P(x)) \forall x$.

2004 Brazil National Olympiad, 5

Consider the sequence $(a_n)_{n\in \mathbb{N}}$ with $a_0=a_1=a_2=a_3=1$ and $a_na_{n-4}=a_{n-1}a_{n-3} + a^2_{n-2}$. Prove that all the terms of this sequence are integer numbers.

2008 Romania Team Selection Test, 5

Find the greatest common divisor of the numbers \[ 2^{561}\minus{}2, 3^{561}\minus{}3, \ldots, 561^{561}\minus{}561.\]

1985 Bulgaria National Olympiad, Problem 1

Let $f(x)$ be a non-constant polynomial with integer coefficients and $n,k$ be natural numbers. Show that there exist $n$ consecutive natural numbers $a,a+1,\ldots,a+n-1$ such that the numbers $f(a),f(a+1),\ldots,f(a+n-1)$ all have at least $k$ prime factors. (We say that the number $p_1^{\alpha_1}\cdots p_s^{\alpha_s}$ has $\alpha_1+\ldots+\alpha_s$ prime factors.)

2011 Math Prize For Girls Problems, 17

There is a polynomial $P$ such that for every real number $x$, \[ x^{512} + x^{256} + 1 = (x^2 + x + 1) P(x). \] When $P$ is written in standard polynomial form, how many of its coefficients are nonzero?