This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2006 Mathematics for Its Sake, 1

Determine the number of polynomials of degree $ 3 $ that are irreducible over the field of integers modulo a prime.

1941 Moscow Mathematical Olympiad, 084

a) Find an integer $a$ for which $(x - a)(x - 10) + 1$ factors in the product $(x + b)(x + c)$ with integers $b$ and $c$. b) Find nonzero and nonequal integers $a, b, c$ so that $x(x - a)(x - b)(x - c) + 1$ factors into the product of two polynomials with integer coefficients.

2018 Greece National Olympiad, 3

Let $n,m$ be positive integers such that $n<m$ and $a_1, a_2, ..., a_m$ be different real numbers. (a) Find all polynomials $P$ with real coefficients and degree at most $n$ such that: $|P(a_i)-P(a_j)|=|a_i-a_j|$ for all $i,j=\{1, 2, ..., m\}$ such that $i<j$. (b) If $n,m\ge 2$ does there exist a polynomial $Q$ with real coefficients and degree $n$ such that: $|Q(a_i)-Q(a_j)|<|a_i-a_j|$ for all $i,j=\{1, 2, ..., m\}$ such that $i<j$ Edit: See #3

2019 SG Originals, Q4

Let $p \equiv 2 \pmod 3$ be a prime, $k$ a positive integer and $P(x) = 3x^{\frac{2p-1}{3}}+3x^{\frac{p+1}{3}}+x+1$. For any integer $n$, let $R(n)$ denote the remainder when $n$ is divided by $p$ and let $S = \{0,1,\cdots,p-1\}$. At each step, you can either (a) replaced every element $i$ of $S$ with $R(P(i))$ or (b) replaced every element $i$ of $S$ with $R(i^k)$. Determine all $k$ such that there exists a finite sequence of steps that reduces $S$ to $\{0\}$. [i]Proposed by fattypiggy123[/i]

2020-IMOC, A4

One day, before his work time at Jane Street, Sunny decided to have some fun. He saw that there are some real numbers $a_{-1},\ldots,a_{-k}$ on a blackboard, so he decided to do the following process just for fun: if there are real numbers $a_{-k},\ldots,a_{n-1}$ on the blackboard, then he computes the polynomial $$P_n(t)=(1-a_{-k}t)\cdots(1-a_{n-1}t).$$ He then writes a real number $a_n$, where $$a_n=\frac{iP_n(i)-iP_n(-i)}{P_n(i)+P_n(-i)}.$$ If $a_n$ is undefined (that is, $P_n(i)+P_n(-i)=0$), then he would stop and go to work. Show that if Sunny writes some real number on the blackboard twice (or equivalently, there exists $m>n\ge0$ such that $am=an$), then the process never stops. Moreover, show that in this case, all the numbers Sunny writes afterwards will already be written before. (usjl)

1985 Bulgaria National Olympiad, Problem 2

Find all real parameters $a$ for which all the roots of the equation $$x^6+3x^5+(6-a)x^4+(7-2a)x^3+(6-a)x^2+3x+1$$are real.

1995 China Team Selection Test, 3

Prove that the interval $\lbrack 0,1 \rbrack$ can be split into black and white intervals for any quadratic polynomial $P(x)$, such that the sum of weights of the black intervals is equal to the sum of weights of the white intervals. (Define the weight of the interval $\lbrack a,b \rbrack$ as $P(b) - P(a)$.) Does the same result hold with a degree 3 or degree 5 polynomial?

1957 Moscow Mathematical Olympiad, 347

a) Let $ax^3 + bx^2 + cx + d$ be divisible by $5$ for given positive integers $a, b, c, d$ and any integer $x$. Prove that $a, b, c$ and $d$ are all divisible by $5$. b) Let $ax^4 + bx^3 + cx^2 + dx + e$ be divisible by $7$ for given positive integers $a, b, c, d, e$ and all integers $x$. Prove that $a, b, c, d$ and $e$ are all divisible by $7$.

2001 China Team Selection Test, 1

Let $p(x)$ be a polynomial with real coefficients such that $p(0)=p(n)$. Prove that there are at least $n$ pairs of real numbers $(x,y)$ where $p(x)=p(y)$ and $y-x$ is a positive integer

2012 Iran MO (3rd Round), 3

Suppose $p$ is a prime number and $a,b,c \in \mathbb Q^+$ are rational numbers; [b]a)[/b] Prove that $\mathbb Q(\sqrt[p]{a}+\sqrt[p]{b})=\mathbb Q(\sqrt[p]{a},\sqrt[p]{b})$. [b]b)[/b] If $\sqrt[p]{b} \in \mathbb Q(\sqrt[p]{a})$, prove that for a nonnegative integer $k$ we have $\sqrt[p]{\frac{b}{a^k}}\in \mathbb Q$. [b]c)[/b] If $\sqrt[p]{a}+\sqrt[p]{b}+\sqrt[p]{c} \in \mathbb Q$, then prove that numbers $\sqrt[p]{a},\sqrt[p]{b}$ and $\sqrt[p]{c}$ are rational.

1982 Bulgaria National Olympiad, Problem 5

Find all values of parameters $a,b$ for which the polynomial $$x^4+(2a+1)x^3+(a-1)^2x^2+bx+4$$can be written as a product of two monic quadratic polynomials $\Phi(x)$ and $\Psi(x)$, such that the equation $\Psi(x)=0$ has two distinct roots $\alpha,\beta$ which satisfy $\Phi(\alpha)=\beta$ and $\Phi(\beta)=\alpha$.

1983 IMO, 3

Let $ a$, $ b$ and $ c$ be the lengths of the sides of a triangle. Prove that \[ a^{2}b(a \minus{} b) \plus{} b^{2}c(b \minus{} c) \plus{} c^{2}a(c \minus{} a)\ge 0. \] Determine when equality occurs.

1982 Putnam, B2

Let $A(x,y)$ be the number of points $(m,n)$ in the plane with integer coordinates $m$ and $n$ satisfying $m^2+n^2\le x^2+y^2$. Let $g=\sum_{k=1}^\infty e^{-k^2}$. Express $$\int^\infty_{-\infty}\int^\infty_{-\infty}A(x,y)e^{-x^2-y^2}dxdy$$ as a polynomial in $g$.

2013 NIMO Problems, 5

Let $x,y,z$ be complex numbers satisfying \begin{align*} z^2 + 5x &= 10z \\ y^2 + 5z &= 10y \\ x^2 + 5y &= 10x \end{align*} Find the sum of all possible values of $z$. [i]Proposed by Aaron Lin[/i]

1984 Vietnam National Olympiad, 1

$(a)$ Find a polynomial with integer coefficients of the smallest degree having $\sqrt{2} + \sqrt[3]{3}$ as a root. $(b)$ Solve $1 +\sqrt{1 + x^2}(\sqrt{(1 + x)^3}-\sqrt{(1- x)^3}) = 2\sqrt{1 - x^2}$.

2023 South East Mathematical Olympiad, 8

Let $p(x)$ be an $n$-degree $(n \ge 2)$ polynomial with integer coefficients. If there are infinitely many positive integers $m$, such that $p(m)$ at most $n -1$ different prime factors $f$, prove that $p(x)$ has at most $n-1$ different rational roots . [color=#f00]a help in translation is welcome[/color]

2024 Vietnam National Olympiad, 5

For each polynomial $P(x)$, define $$P_1(x)=P(x), \forall x \in \mathbb{R},$$ $$P_2(x)=P(P_1(x)), \forall x \in \mathbb{R},$$ $$...$$ $$P_{2024}(x)=P(P_{2023}(x)), \forall x \in \mathbb{R}.$$ Let $a>2$ be a real number. Is there a polynomial $P$ with real coefficients such that for all $t \in (-a, a)$, the equation $P_{2024}(x)=t$ has $2^{2024}$ distinct real roots?

1998 Harvard-MIT Mathematics Tournament, 7

Given that three roots of $f(x)=x^4+ax^2+bx+c$ are $2$, $-3$, and $5$, what is the value of $a+b+c$?

2004 Thailand Mathematical Olympiad, 6

Let $f(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. Find the remainder when $f(x^7)$ is divided by $f(x)$.

2014 Canadian Mathematical Olympiad Qualification, 1

Let $f : \mathbb{Z} \rightarrow \mathbb{Z}^+$ be a function, and define $h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+$ by $h(x, y) = \gcd (f(x), f(y))$. If $h(x, y)$ is a two-variable polynomial in $x$ and $y$, prove that it must be constant.

PEN A Problems, 44

Suppose that $4^{n}+2^{n}+1$ is prime for some positive integer $n$. Show that $n$ must be a power of $3$.

Russian TST 2020, P3

A polynomial $P(x, y, z)$ in three variables with real coefficients satisfies the identities $$P(x, y, z)=P(x, y, xy-z)=P(x, zx-y, z)=P(yz-x, y, z).$$ Prove that there exists a polynomial $F(t)$ in one variable such that $$P(x,y,z)=F(x^2+y^2+z^2-xyz).$$

2024 Indonesia TST, A

Find all second degree polynomials $P(x)$ such that for all $a \in\mathbb{R} , a \geq 1$, then $P(a^2+a) \geq a.P(a+1)$

2007 Putnam, 5

Let $ k$ be a positive integer. Prove that there exist polynomials $ P_0(n),P_1(n),\dots,P_{k\minus{}1}(n)$ (which may depend on $ k$) such that for any integer $ n,$ \[ \left\lfloor\frac{n}{k}\right\rfloor^k\equal{}P_0(n)\plus{}P_1(n)\left\lfloor\frac{n}{k}\right\rfloor\plus{} \cdots\plus{}P_{k\minus{}1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k\minus{}1}.\] ($ \lfloor a\rfloor$ means the largest integer $ \le a.$)

2013 ELMO Shortlist, 8

We define the [i]Fibonacci sequence[/i] $\{F_n\}_{n\ge0}$ by $F_0=0$, $F_1=1$, and for $n\ge2$, $F_n=F_{n-1}+F_{n-2}$; we define the [i]Stirling number of the second kind[/i] $S(n,k)$ as the number of ways to partition a set of $n\ge1$ distinguishable elements into $k\ge1$ indistinguishable nonempty subsets. For every positive integer $n$, let $t_n = \sum_{k=1}^{n} S(n,k) F_k$. Let $p\ge7$ be a prime. Prove that \[ t_{n+p^{2p}-1} \equiv t_n \pmod{p} \] for all $n\ge1$. [i]Proposed by Victor Wang[/i]