This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2004 China Team Selection Test, 3

Given arbitrary positive integer $ a$ larger than $ 1$, show that for any positive integer $ n$, there always exists a n-degree integral coefficient polynomial $ p(x)$, such that $ p(0)$, $ p(1)$, $ \cdots$, $ p(n)$ are pairwise distinct positive integers, and all have the form of $ 2a^k\plus{}3$, where $ k$ is also an integer.

2008 Purple Comet Problems, 7

A line through the origin passes through the curve whose equation is $5y=2x^2-9x+10$ at two points whose $x-$coordinates add up to $77.$ Find the slope of the line.

2023 International Zhautykov Olympiad, 3

Let $a_1, a_2, \cdots, a_k$ be natural numbers. Let $S(n)$ be the number of solutions in nonnegative integers to $a_1x_1 + a_2x_2 + \cdots + a_kx_k = n$. Suppose $S(n) \neq 0$ for all big enough $n$. Show that for all sufficiently large $n$, we have $S(n+1) < 2S(n)$.

1967 IMO Shortlist, 3

Suppose that $p$ and $q$ are two different positive integers and $x$ is a real number. Form the product $(x+p)(x+q).$ Find the sum $S(x,n) = \sum (x+p)(x+q),$ where $p$ and $q$ take values from 1 to $n.$ Does there exist integer values of $x$ for which $S(x,n) = 0.$

2013 ELMO Shortlist, 2

For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in $\mathbb{R}^3$ so that for every integer $n \ge 1$, the sum of the $n^3$ integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$? [i]Proposed by Andre Arslan[/i]

2021 Durer Math Competition Finals, 8

John found all real numbers $p$ such that in the polynomial $g(x) = (x -1)^2(p + 2x)^2$ , the quadratic term has coefficient $2021$. What is the sum of all of these values $p$?

2010 Baltic Way, 4

Find all polynomials $P(x)$ with real coefficients such that \[(x-2010)P(x+67)=xP(x) \] for every integer $x$.

2012 AIME Problems, 14

Complex numbers $a$, $b$ and $c$ are the zeros of a polynomial $P(z) = z^3+qz+r$, and $|a|^2+|b|^2+|c|^2=250$. The points corresponding to $a$, $b$, and $c$ in the complex plane are the vertices of a right triangle with hypotenuse $h$. Find $h^2$.

2010 Contests, 3

prove that for each natural number $n$ there exist a polynomial with degree $2n+1$ with coefficients in $\mathbb{Q}[x]$ such that it has exactly $2$ complex zeros and it's irreducible in $\mathbb{Q}[x]$.(20 points)

2007 Moldova National Olympiad, 12.5

Find all polynomials $P\in \mathbb C[X]$ such that \[P(X^{2})=P(X)^{2}+2P(X)\]

1977 Polish MO Finals, 3

Consider the polynomial $W(x) = (x - a)^kQ(x)$, where $a \neq 0$, $Q$ is a nonzero polynomial, and $k$ a natural number. Prove that $W$ has at least $k + 1$ nonzero coefficients.

2007 Bulgaria National Olympiad, 3

Let $P(x)\in \mathbb{Z}[x]$ be a monic polynomial with even degree. Prove that, if for infinitely many integers $x$, the number $P(x)$ is a square of a positive integer, then there exists a polynomial $Q(x)\in\mathbb{Z}[x]$ such that $P(x)=Q(x)^2$.

2010 Saint Petersburg Mathematical Olympiad, 3

$a$ is irrational , but $a$ and $a^3-6a$ are roots of square polynomial with integer coefficients.Find $a$

2009 Polish MO Finals, 3

Let $P,Q,R$ be polynomials of degree at least $1$ with integer coefficients such that for any real number $x$ holds: $P(Q(x))\equal{}Q(R(x))\equal{}R(P(x))$. Show that the polynomials $P,Q,R$ are equal.

2009 Princeton University Math Competition, 1

Find the root that the following three polynomials have in common: \begin{align*} & x^3+41x^2-49x-2009 \\ & x^3 + 5x^2-49x-245 \\ & x^3 + 39x^2 - 117x - 1435\end{align*}

2011 AIME Problems, 8

Let $z_1,z_2,z_3,\dots,z_{12}$ be the 12 zeroes of the polynomial $z^{12}-2^{36}$. For each $j$, let $w_j$ be one of $z_j$ or $i z_j$. Then the maximum possible value of the real part of $\displaystyle\sum_{j=1}^{12} w_j$ can be written as $m+\sqrt{n}$ where $m$ and $n$ are positive integers. Find $m+n$.

2012 Today's Calculation Of Integral, 852

Let $f(x)$ be a polynomial. Prove that if $\int_0^1 f(x)g_n(x)\ dx=0\ (n=0,\ 1,\ 2,\ \cdots)$, then all coefficients of $f(x)$ are 0 for each case as follows. (1) $g_n(x)=(1+x)^n$ (2) $g_n(x)=\sin n\pi x$ (3) $g_n(x)=e^{nx}$

2013 BMT Spring, 5

Consider the roots of the polynomial $x^{2013}-2^{2013}=0$. Some of these roots also satisfy $x^k-2^k=0$, for some integer $k<2013$. What is the product of this subset of roots?

2004 Baltic Way, 8

Let $f\left(x\right)$ be a non-constant polynomial with integer coefficients, and let $u$ be an arbitrary positive integer. Prove that there is an integer $n$ such that $f\left(n\right)$ has at least $u$ distinct prime factors and $f\left(n\right) \neq 0$.

2016 District Olympiad, 4

Let $ a\ge 2 $ be a natural number. Show that the following relations are equivalent: $ \text{(i)} \ a $ is the hypothenuse of a right triangle whose sides are natural numbers. $ \text{(ii)}\quad $ there exists a natural number $ d $ for which the polynoms $ X^2-aX\pm d $ have integer roots.

1976 Miklós Schweitzer, 8

Prove that the set of all linearly combinations (with real coefficients) of the system of polynomials $ \{ x^n\plus{}x^{n^2} \}_{n\equal{}0}^{\infty}$ is dense in $ C[0,1]$. [i]J. Szabados[/i]

2010 Putnam, B6

Let $A$ be an $n\times n$ matrix of real numbers for some $n\ge 1.$ For each positive integer $k,$ let $A^{[k]}$ be the matrix obtained by raising each entry to the $k$th power. Show that if $A^k=A^{[k]}$ for $k=1,2,\cdots,n+1,$ then $A^k=A^{[k]}$ for all $k\ge 1.$

2017 Taiwan TST Round 1, 1

Find all polynomials $P$ with real coefficients which satisfy \[P(x)P(x+1)=P(x^2-x+3) \quad \forall x \in \mathbb{R}\]

1993 AIME Problems, 5

Let $P_0(x) = x^3 + 313x^2 - 77x - 8$. For integers $n \ge 1$, define $P_n(x) = P_{n - 1}(x - n)$. What is the coefficient of $x$ in $P_{20}(x)$?

2022 Benelux, 1

Let $n\geqslant 0$ be an integer, and let $a_0,a_1,\dots,a_n$ be real numbers. Show that there exists $k\in\{0,1,\dots,n\}$ such that $$a_0+a_1x+a_2x^2+\cdots+a_nx^n\leqslant a_0+a_1+\cdots+a_k$$ for all real numbers $x\in[0,1]$.