Found problems: 3597
2008 China Team Selection Test, 2
Prove that for all $ n\geq 2,$ there exists $ n$-degree polynomial $ f(x) \equal{} x^n \plus{} a_{1}x^{n \minus{} 1} \plus{} \cdots \plus{} a_{n}$ such that
(1) $ a_{1},a_{2},\cdots, a_{n}$ all are unequal to $ 0$;
(2) $ f(x)$ can't be factorized into the product of two polynomials having integer coefficients and positive degrees;
(3) for any integers $ x, |f(x)|$ isn't prime numbers.
2017 CentroAmerican, 2
Susana and Brenda play a game writing polynomials on the board. Susana starts and they play taking turns.
1) On the preparatory turn (turn 0), Susana choose a positive integer $n_0$ and writes the polynomial $P_0(x)=n_0$.
2) On turn 1, Brenda choose a positive integer $n_1$, different from $n_0$, and either writes the polynomial
$$P_1(x)=n_1x+P_0(x) \textup{ or } P_1(x)=n_1x-P_0(x)$$
3) In general, on turn $k$, the respective player chooses an integer $n_k$, different from $n_0, n_1, \ldots, n_{k-1}$, and either writes the polynomial
$$P_k(x)=n_kx^k+P_{k-1}(x) \textup{ or } P_k(x)=n_kx^k-P_{k-1}(x)$$
The first player to write a polynomial with at least one whole whole number root wins. Find and describe a winning strategy.
MathLinks Contest 6th, 7.1
Write the following polynomial as a product of irreducible polynomials in $\mathbb{Z}[X]$
\[ f(X) = X^{2005} - 2005 X + 2004 . \]Justify your answer.
2009 CHKMO, 2
Let $ n>4$ be a positive integer such that $ n$ is composite (not a prime) and divides $ \varphi (n) \sigma (n) \plus{}1$, where $ \varphi (n)$ is the Euler's totient function of $ n$ and $ \sigma (n)$ is the sum of the positive divisors of $ n$. Prove that $ n$ has at least three distinct prime factors.
2010 Harvard-MIT Mathematics Tournament, 10
Let $p(x)$ and $q(x)$ be two cubic polynomials such that $p(0)=-24$, $q(0)=30$, and \[p(q(x))=q(p(x))\] for all real numbers $x$. Find the ordered pair $(p(3),q(6))$.
2015 Korea Junior Math Olympiad, 7
For a polynomial $f(x)$ with integer coefficients and degree no less than $1$, prove that there are infinitely many primes $p$ which satisfies the following.
There exists an integer $n$ such that $f(n) \not= 0$ and $|f(n)|$ is a multiple of $p$.
2008 Korea - Final Round, 2
Find all integer polynomials $f$ such that there are infinitely many pairs of relatively prime natural numbers $(a,b)$ so that $a+b \mid f(a)+f(b)$.
2012 Serbia Team Selection Test, 1
Let $P(x)$ be a polynomial of degree $2012$ with real coefficients satisfying the condition \[P(a)^3 + P(b)^3 + P(c)^3 \geq 3P(a)P(b)P(c),\] for all real numbers $a,b,c$ such that $a+b+c=0$. Is it possible for $P(x)$ to have exactly $2012$ distinct real roots?
2003 Moldova National Olympiad, 12.2
For every natural number $n\geq{2}$ consider the following affirmation $P_n$:
"Consider a polynomial $P(X)$ (of degree $n$) with real coefficients. If its derivative $P'(X)$ has $n-1$ distinct real roots, then there is a real number $C$ such that the equation $P(x)=C$ has $n$ real,distinct roots."
Are $P_4$ and $P_5$ both true? Justify your answer.
1987 Romania Team Selection Test, 4
Let $ P(X) \equal{} a_{n}X^{n} \plus{} a_{n \minus{} 1}X^{n \minus{} 1} \plus{} \ldots \plus{} a_{1}X \plus{} a_{0}$ be a real polynomial of degree $ n$. Suppose $ n$ is an even number and:
a) $ a_{0} > 0$, $ a_{n} > 0$;
b) $ a_{1}^{2} \plus{} a_{2}^{2} \plus{} \ldots \plus{} a_{n \minus{} 1}^{2}\leq\frac {4\min(a_{0}^{2} , a_{n}^{2})}{n \minus{} 1}$.
Prove that $ P(x)\geq 0$ for all real values $ x$.
[i]Laurentiu Panaitopol[/i]
2023-24 IOQM India, 12
Let $P(x)=x^3+ax^2+bx+c$ be a polynomial where $a,b,c$ are integers and $c$ is odd. Let $p_{i}$ be the value of $P(x)$ at $x=i$. Given that $p_{1}^3+p_{2}^{3}+p_{3}^{3}=3p_{1}p_{2}p_{3}$, find the value of $p_{2}+2p_{1}-3p_{0}.$
2005 Singapore MO Open, 3
Let $a,b,c$ be real numbers satisfying $a<b<c,a+b+c=6,ab+bc+ac=9$. Prove that $0<a<1<b<3<c<4$
[hide="Solution"]
Let $abc=k$, then $a,b,c\ (a<b<c)$ are the roots of cubic equation $x^3-6x^2+9x-k=0\Longleftrightarrow x(x-3)^2=k$
that is to say, $a,b,c\ (a<b<c)$ are the $x$-coordinates of the interception of points between $y=x(x-3)^2$ and
$y=k$.
$y=x(x-3)^2$ have local maximuml value of $4$ at $x=1$ and local minimum value of $0$ at $x=3$.
Since the $x$-coordinate of the interception point between $y=x(x-3)^2$ and $y=4$ which is the tangent line at
local maximum point $(1,4)$ is a point $(4,4)$,Moving the line $y=k$ so that the two graphs $y=x(x-3)^2$ and
$y=k$ have the distinct three interception points,we can find that the range of $a,b,c$ are
$0<a<1,1<b<3,3<c<4
$,we are done.[/hide]
2016 Greece National Olympiad, 2
Find all monic polynomials $P,Q$ which are non-constant, have real coefficients and they satisfy $2P(x)=Q(\frac{(x+1)^2}{2})-Q(\frac{(x-1)^2}{2})$ and $P(1)=1$ for all real $x$.
2008 Kazakhstan National Olympiad, 3
Let $ f(x,y,z)$ be the polynomial with integer coefficients. Suppose that for all reals $ x,y,z$ the following equation holds:
\[ f(x,y,z) \equal{} \minus{} f(x,z,y) \equal{} \minus{} f(y,x,z) \equal{} \minus{} f(z,y,x)
\]
Prove that if $ a,b,c\in\mathbb{Z}$ then $ f(a,b,c)$ takes an even value
2016 Indonesia TST, 2
Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]
2002 Taiwan National Olympiad, 5
Suppose that the real numbers $a_{1},a_{2},...,a_{2002}$ satisfying
$\frac{a_{1}}{2}+\frac{a_{2}}{3}+...+\frac{a_{2002}}{2003}=\frac{4}{3}$
$\frac{a_{1}}{3}+\frac{a_{2}}{4}+...+\frac{a_{2002}}{2004}=\frac{4}{5}$
$...$
$\frac{a_{1}}{2003}+\frac{a_{2}}{2004}+...+\frac{a_{2002}}{4004}=\frac{4}{4005}$
Evaluate the sum $\frac{a_{1}}{3}+\frac{a_{2}}{5}+...+\frac{a_{2002}}{4005}$.
2019 Jozsef Wildt International Math Competition, W. 13
Let $a$, $b$ and $c$ be complex numbers such that $abc = 1$. Find the value of the cubic root of
\begin{tabular}{|ccc|}
$b + n^3c$ & $n(c - b)$ & $n^2(b - c)$\\
$n^2(c - a)$ & $c + n^3a$ & $n(a - c)$\\
$n(b - a)$ & $n^2(a - b)$ & $a + n^3b$
\end{tabular}
2015 India IMO Training Camp, 2
Let $f$ and $g$ be two polynomials with integer coefficients such that the leading coefficients of both the polynomials are positive. Suppose $\deg(f)$ is odd and the sets $\{f(a)\mid a\in \mathbb{Z}\}$ and $\{g(a)\mid a\in \mathbb{Z}\}$ are the same. Prove that there exists an integer $k$ such that $g(x)=f(x+k)$.
2000 Harvard-MIT Mathematics Tournament, 10
$23$ frat brothers are sitting in a circle. One, call him Alex, starts with a gallon of water. On the first turn, Alex gives each person in the circle some rational fraction of his water. On each subsequent turn, every person with water uses the same scheme as Alex did to distribute his water, but in relation to themselves. For instance, suppose Alex gave $\frac{1}{2}$ and $\frac{1}{6}$ of his water to his left and right neighbors respectively on the first turn and kept $\frac{1}{3}$ for himself. On each subsequent turn everyone gives $\frac{1}{2}$ and $\frac{1}{6}$ of the water they started the turn with to their left and right neighbors, respectively, and keep the final third for themselves. After $23$ turns, Alex again has a gallon of water. What possibilities are there for the scheme he used in the first turn?
(Note: you may find it useful to know that $1+x+x^2+\cdot +x^{23}$ has no polynomial factors with rational coefficients)
2013 Stanford Mathematics Tournament, 2
If $f$ is a monic cubic polynomial with $f(0)=-64$, and all roots of $f$ are non-negative real numbers, what is the largest possible value of $f(-1)$? (A polynomial is monic if it has a leading coefficient of $1$.)
2017 China Team Selection Test, 5
A(x,y), B(x,y), and C(x,y) are three homogeneous real-coefficient polynomials of x and y with degree 2, 3, and 4 respectively. we know that there is a real-coefficient polinimial R(x,y) such that $B(x,y)^2-4A(x,y)C(x,y)=-R(x,y)^2$. Proof that there exist 2 polynomials F(x,y,z) and G(x,y,z) such that $F(x,y,z)^2+G(x,y,z)^2=A(x,y)z^2+B(x,y)z+C(x,y)$ if for any x, y, z real numbers $A(x,y)z^2+B(x,y)z+C(x,y)\ge 0$
1974 IMO, 6
Let $P(x)$ be a polynomial with integer coefficients. We denote $\deg(P)$ its degree which is $\geq 1.$ Let $n(P)$ be the number of all the integers $k$ for which we have $(P(k))^{2}=1.$ Prove that $n(P)- \deg(P) \leq 2.$
1981 Romania Team Selection Tests, 1.
Let $P(X)=aX^3-\frac16 X$ where $a\in\mathbb{R}$.
[b]1)[/b] Determine $a$ such that for every $\alpha\in\mathbb{Z}$ we have $P(\alpha)\in\mathbb{Z}$.
[b]2)[/b] Show that if $a$ is irrational then for every $0<u<v<1$ there exists $n\in\mathbb{Z}$ such that
\[u<P(n)-\lfloor P(n)\rfloor <v.\]
Generalize the problem!
2021 Purple Comet Problems, 28
Let $z_1$, $z_2$, $z_3$, $\cdots$, $z_{2021}$ be the roots of the polynomial $z^{2021}+z-1$. Evaluate $$\frac{z_1^3}{z_{1}+1}+\frac{z_2^3}{z_{2}+1}+\frac{z_3^3}{z_{3}+1}+\cdots+\frac{z_{2021}^3}{z_{2021}+1}.$$
1996 Brazil National Olympiad, 6
Let p(x) be the polynomial $x^3 + 14x^2 - 2x + 1$. Let $p^n(x)$ denote $p(p^(n-1)(x))$. Show that there is an integer N such that $p^N(x) - x$ is divisible by 101 for all integers x.