This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1988 Greece Junior Math Olympiad, 3

Consider the polynomials $P(x)=x^4-3x^3+x-3,\,\,\,\,Q(x)=x^2-2x-3 \,\,\,\, R(x)=-x^2-5x+a$ i) Find $a \in $R such that polynomial $R(x)$ is dividide by $x-2$ ii) Factor polynomials $P(x),Q(x)$ iii) Prove that exrpession $-x^2+x+\frac{P(x)}{Q(x)}+15$ is a perfect square.

2010 JBMO Shortlist, 1

The real numbers $a$, $b$, $c$, $d$ satisfy simultaneously the equations \[abc -d = 1, \ \ \ bcd - a = 2, \ \ \ cda- b = 3, \ \ \ dab - c = -6.\] Prove that $a + b + c + d \not = 0$.

1977 All Soviet Union Mathematical Olympiad, 242

The polynomial $$x^{10} + ?x^9 + ?x^8 + ... + ?x + 1$$ is written on the blackboard. Two players substitute (real) numbers instead of one of the question marks in turn. ($9$ turns total.) The first wins if the polynomial will have no real roots. Who wins?

2006 Romania Team Selection Test, 2

Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]

1960 Polish MO Finals, 4

Prove that if the equation $$x^4 + ax + b = 0$$ has two equal roots, then $$\left( \frac{a}{4} \right)^4 =\left( \frac{b}{3} \right)^3.$$

2018 Swedish Mathematical Competition, 6

For which positive integers $n$ can the polynomial $p(x) = 1 + x^n + x^{2n}$ is written as a product of two polynomials with integer coefficients (of degree $\ge 1$)?

2004 Romania National Olympiad, 3

Let $f : \left[ 0,1 \right] \to \mathbb R$ be an integrable function such that \[ \int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1 . \] Prove that \[ \int_0^1 f^2 (x) \, dx \geq 4 . \] [i]Ion Rasa[/i]

2011 National Olympiad First Round, 11

The sum of distinct real roots of the polynomial $x^5+x^4-4x^3-7x^2-7x-2$ is $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ -2 \qquad\textbf{(E)}\ 7$

2017 VJIMC, 1

Let $(a_n)_{n=1}^{\infty}$ be a sequence with $a_n \in \{0,1\}$ for every $n$. Let $F:(-1,1) \to \mathbb{R}$ be defined by \[F(x)=\sum_{n=1}^{\infty} a_nx^n\] and assume that $F\left(\frac{1}{2}\right)$ is rational. Show that $F$ is the quotient of two polynomials with integer coefficients.

India EGMO 2024 TST, 3

Find all functions $f: \mathbb{N} \mapsto \mathbb{N}$ so that for any positive integer $n$ and finite sequence of positive integers $a_0, \dots, a_n$, whenever the polynomial $a_0+a_1x+\dots+a_nx^n$ has at least one integer root, so does \[f(a_0)+f(a_1)x+\dots+f(a_n)x^n.\] [i]Proposed by Sutanay Bhattacharya[/i]

2005 China Team Selection Test, 3

Let $n$ be a positive integer, and $a_j$, for $j=1,2,\ldots,n$ are complex numbers. Suppose $I$ is an arbitrary nonempty subset of $\{1,2,\ldots,n\}$, the inequality $\left|-1+ \prod_{j\in I} (1+a_j) \right| \leq \frac 12$ always holds. Prove that $\sum_{j=1}^n |a_j| \leq 3$.

1998 Italy TST, 4

Find all polynomials $P(x) = x^n +a_1x^{n-1} +...+a_n$ whose zeros (with their multiplicities) are exactly $a_1,a_2,...,a_n$.

2004 Romania Team Selection Test, 4

Let $D$ be a closed disc in the complex plane. Prove that for all positive integers $n$, and for all complex numbers $z_1,z_2,\ldots,z_n\in D$ there exists a $z\in D$ such that $z^n = z_1\cdot z_2\cdots z_n$.

1974 Kurschak Competition, 3

Let $$p_k(x) = 1 -x + \frac{x^2}{2! } - \frac{x^3}{3!}+ ... + \frac{(-x)^{2k}}{(2k)!}$$ Show that it is non-negative for all real $x$ and all positive integers $k$.

2020 IMO Shortlist, A5

A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

1999 Yugoslav Team Selection Test, Problem 1

For a natural number $n$, let $P(x)$ be the polynomial of $2n$−th degree such that: $P(0) = 1$ and $P(k) = 2^{k-1}$ for $k = 1, 2, . . . , 2n$. Prove that $2P(2n + 1) - P(2n + 2) = 1$. P.S. I tried to prove it by firstly expressing this polynomial using Lagrange interpolation but get bored of computations - it seems like it can be done this way, but I'd like to see more 'clever' solution. :)

2013 ELMO Shortlist, 3

Find all $f:\mathbb{R}\to\mathbb{R}$ such that for all $x,y\in\mathbb{R}$, $f(x)+f(y) = f(x+y)$ and $f(x^{2013}) = f(x)^{2013}$. [i]Proposed by Calvin Deng[/i]

2014 Vietnam National Olympiad, 2

Given the polynomial $P(x)=(x^2-7x+6)^{2n}+13$ where $n$ is a positive integer. Prove that $P(x)$ can't be written as a product of $n+1$ non-constant polynomials with integer coefficients.

2012 IMO Shortlist, A4

Let $f$ and $g$ be two nonzero polynomials with integer coefficients and $\deg f>\deg g$. Suppose that for infinitely many primes $p$ the polynomial $pf+g$ has a rational root. Prove that $f$ has a rational root.

2010 Contests, 1

Let $P$ be a polynomial with integer coefficients such that $P(0)=0$ and \[\gcd(P(0), P(1), P(2), \ldots ) = 1.\] Show there are infinitely many $n$ such that \[\gcd(P(n)- P(0), P(n+1)-P(1), P(n+2)-P(2), \ldots) = n.\]

2007 Iran MO (3rd Round), 1

Let $ a,b$ be two complex numbers. Prove that roots of $ z^{4}\plus{}az^{2}\plus{}b$ form a rhombus with origin as center, if and only if $ \frac{a^{2}}{b}$ is a non-positive real number.

2021 Kosovo National Mathematical Olympiad, 4

Let $P(x)$ be a polynomial with integer coefficients. We will denote the set of all prime numbers by $\mathbb P$. Show that the set $\mathbb S := \{p\in\mathbb P : \exists\text{ }n \text{ s.t. }p\mid P(n)\}$ is finite if and only if $P(x)$ is a non-zero constant polynomial.

2008 China Team Selection Test, 3

Let $ n>m>1$ be odd integers, let $ f(x)\equal{}x^n\plus{}x^m\plus{}x\plus{}1$. Prove that $ f(x)$ can't be expressed as the product of two polynomials having integer coefficients and positive degrees.

2008 Baltic Way, 1

Determine all polynomials $p(x)$ with real coefficients such that $p((x+1)^3)=(p(x)+1)^3$ and $p(0)=0$.

2011 Today's Calculation Of Integral, 696

Let $P(x),\ Q(x)$ be polynomials such that : \[\int_0^2 \{P(x)\}^2dx=14,\ \int_0^2 P(x)dx=4,\ \int_0^2 \{Q(x)\}^2dx=26,\ \int_0^2 Q(x)dx=2.\] Find the maximum and the minimum value of $\int_0^2 P(x)Q(x)dx$.