This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1982 AMC 12/AHSME, 27

Suppose $z=a+bi$ is a solution of the polynomial equation $c_4z^4+ic_3z^3+c_2z^2+ic_1z+c_0=0$, where $c_0$, $c_1$, $c_2$, $c_3$, $a$, and $b$ are real constants and $i^2=-1$. Which of the following must also be a solution? $\textbf{(A) } -a-bi\qquad \textbf{(B) } a-bi\qquad \textbf{(C) } -a+bi\qquad \textbf{(D) }b+ai \qquad \textbf{(E) } \text{none of these}$

2014 Greece Team Selection Test, 2

Find all real non-zero polynomials satisfying $P(x)^3+3P(x)^2=P(x^{3})-3P(-x)$ for all $x\in\mathbb{R}$.

2003 Iran MO (3rd Round), 7

$f_{1},f_{2},\dots,f_{n}$ are polynomials with integer coefficients. Prove there exist a reducible $g(x)$ with integer coefficients that $f_{1}+g,f_{2}+g,\dots,f_{n}+g$ are irreducible.

2006 Taiwan TST Round 1, 2

Let $p,q$ be two distinct odd primes. Calculate $\displaystyle \sum_{j=1}^{\frac{p-1}{2}}\left \lfloor \frac{qj}{p}\right \rfloor +\sum_{j=1}^{\frac{q-1}{2}}\left \lfloor \frac{pj}{q}\right\rfloor$.

2016 Azerbaijan Team Selection Test, 2

A positive interger $n$ is called [i][u]rising[/u][/i] if its decimal representation $a_ka_{k-1}\cdots a_0$ satisfies the condition $a_k\le a_{k-1}\le\cdots \le a_0$. Polynomial $P$ with real coefficents is called [i][u]interger-valued[/u][/i] if for all integer numbers $n$, $P(n)$ takes interger values. $P(n)$ is called [i][u]rising-valued[/u][/i] if for all [i]rising[/i] numbers $n$, $P(n)$ takes integer values. Does it necessarily mean that, "every [i]rising-valued[/i] $P$ is also [i]interger-valued[/i] $P$"?

1990 All Soviet Union Mathematical Olympiad, 533

A game is played in three moves. The first player picks any real number, then the second player makes it the coefficient of a cubic, except that the coefficient of $x^3$ is already fixed at $1$. Can the first player make his choices so that the final cubic has three distinct integer roots?

2004 All-Russian Olympiad Regional Round, 10.5

Equation $$x^n + a_1x^{n-1} + a_2x^{n-2} +...+ a_{n-1}x + a_n = 0$$ with integer non-zero coefficients $a_1$, $a_2$, $...$ , $a_n$ has $n$ different integer roots. Prove that if any two roots are relatively prime, then the numbers $a_{n-1}$ and $a_n$ are coprime.

2013 Greece Team Selection Test, 1

Determine whether the polynomial $P(x)=(x^2-2x+5)(x^2-4x+20)+1$ is irreducible over $\mathbb{Z}[X]$.

2002 Putnam, 6

Let $p$ be a prime number. Prove that the determinant of the matrix \[ \begin{bmatrix}x & y & z\\ x^p & y^p & z^p \\ x^{p^2} & y^{p^2} & z^{p^2} \end{bmatrix} \] is congruent modulo $p$ to a product of polynomials of the form $ax+by+cz$, where $a$, $b$, and $c$ are integers. (We say two integer polynomials are congruent modulo $p$ if corresponding coefficients are congruent modulo $p$.)

2024 Belarus Team Selection Test, 4.2

Let $f(x)=x^2+bx+c$, where $b,c \in \mathbb{R}$ and $b>0$ Do there exist disjoint sets $A$ and $B$, whose union is $[0,1]$ and $f(A)=B$, where $f(X)=\{f(x), x \in X\}$ [i]D. Zmiaikou[/i]

2003 Poland - Second Round, 3

Let $W(x) = x^4 - 3x^3 + 5x^2 - 9x$ be a polynomial. Determine all pairs of different integers $a$, $b$ satisfying the equation $W(a) = W(b)$.

2007 Belarusian National Olympiad, 6

Let $a$ be the sum and $b$ the product of the real roots of the equation $x^4-x^3-1=0$ Prove that $b < -\frac{11}{10}$ and $a > \frac{6}{11}$.

2009 Baltic Way, 2

Let $ a_1,a_{2},\ldots ,a_{100}$ be nonnegative integers satisfying the inequality \[a_1\cdot (a_1-1)\cdot\ldots\cdot (a_1-20)+a_2\cdot (a_2-1)\cdot\ldots\cdot (a_2-20)+\\ \ldots+a_{100}\cdot (a_{100}-1)\cdot\ldots\cdot (a_{100}-20)\le 100\cdot 99\cdot 98\cdot\ldots\cdot 79.\] Prove that $a_1+a_2+\ldots+a_{100}\le 9900$.

1990 APMO, 2

Let $a_1$, $a_2$, $\cdots$, $a_n$ be positive real numbers, and let $S_k$ be the sum of the products of $a_1$, $a_2$, $\cdots$, $a_n$ taken $k$ at a time. Show that \[ S_k S_{n-k} \geq {n \choose k}^2 a_1 a_2 \cdots a_n \] for $k = 1$, $2$, $\cdots$, $n - 1$.

2010 Argentina Team Selection Test, 5

Let $p$ and $q$ be prime numbers. The sequence $(x_n)$ is defined by $x_1 = 1$, $x_2 = p$ and $x_{n+1} = px_n - qx_{n-1}$ for all $n \geq 2$. Given that there is some $k$ such that $x_{3k} = -3$, find $p$ and $q$.

2017 Iran Team Selection Test, 4

A $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ where $h_i\left(x_1,x_2, \cdots , x_n\right)$ are $n$ variable polynomials with real coefficients is called [i]good[/i] if the following condition holds: For any $n$ functions $f_1,f_2, \cdots ,f_n : \mathbb R \to \mathbb R$ if for all $1 \le i \le n+1$, $P_i(x)=h_i \left(f_1(x),f_2(x), \cdots, f_n(x) \right)$ is a polynomial with variable $x$, then $f_1(x),f_2(x), \cdots, f_n(x)$ are polynomials. $a)$ Prove that for all positive integers $n$, there exists a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that the degree of all $h_i$ is more than $1$. $b)$ Prove that there doesn't exist any integer $n>1$ that for which there is a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that all $h_i$ are symmetric polynomials. [i]Proposed by Alireza Shavali[/i]

2019 Dutch IMO TST, 1

Let $P(x)$ be a quadratic polynomial with two distinct real roots. For all real numbers $a$ and $b$ satisfying $|a|,|b| \ge 2017$, we have $P(a^2+b^2) \ge P(2ab)$. Show that at least one of the roots of $P$ is negative.

2004 Iran Team Selection Test, 6

$p$ is a polynomial with integer coefficients and for every natural $n$ we have $p(n)>n$. $x_k $ is a sequence that: $x_1=1, x_{i+1}=p(x_i)$ for every $N$ one of $x_i$ is divisible by $N.$ Prove that $p(x)=x+1$

2023 Miklós Schweitzer, 9

Let $C[-1,1]$ be the space of continuous real functions on the interval $[-1,1]$ with the usual supremum norm, and let $V{}$ be a closed, finite-codimensional subspace of $C[-1,1].$ Prove that there exists a polynomial $p\in V$ with norm at most one, which satisfies $p'(0)>2023.$

2000 Greece JBMO TST, 3

Find $a\in Z$ such that the equation $2x^2+2ax+a-1=0$ has integer solutions, which should be found.

2020 DMO Stage 1, 2.

[b]Q.[/b] Find all polynomials $P: \mathbb{R \times R}\to\mathbb{R\times R}$ with real coefficients, such that $$P(x,y) = P(x+y,x-y), \ \forall\ x,y \in \mathbb{R}.$$ [i]Proposed by TuZo[/i]

1985 Swedish Mathematical Competition, 4

Let $p(x)$ be a polynomial of degree $n$ with real coefficients such that $p(x) \ge 0$ for all $x$. Prove that $p(x)+ p'(x)+ p''(x)+...+ p^{(n)}(x) \ge 0$.

1999 Putnam, 5

Prove that there is a constant $C$ such that, if $p(x)$ is a polynomial of degree $1999$, then \[|p(0)|\leq C\int_{-1}^1|p(x)|\,dx.\]

2025 Thailand Mathematical Olympiad, 10

Let $n$ be a positive integer. Show that there exist a polynomial $P(x)$ with integer coefficient that satisfy the following [list] [*]Degree of $P(x)$ is at most $2^n - n -1$ [*]$|P(k)| = (k-1)!(2^n-k)!$ for each $k \in \{1,2,3,\dots,2^n\}$ [/list]

1959 Putnam, A1

Let $n$ be a positive integer. Prove that $x^n -\frac{1}{x^{n}}$ is expressible as a polynomial in $x-\frac{1}{x}$ with real coefficients if and only if $n$ is odd.