This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2003 Austrian-Polish Competition, 1

Find all real polynomials $p(x) $ such that $p(x-1)p(x+1)= p(x^2-1)$.

1996 All-Russian Olympiad Regional Round, 11.4

A polynomial $P(x)$ of degree $n$ has $n$ different real roots. What is the largest number of its coefficients that can be zero?

1988 Iran MO (2nd round), 1

[b](a)[/b] Prove that for all positive integers $m,n$ we have \[\sum_{k=1}^n k(k+1)(k+2)\cdots (k+m-1)=\frac{n(n+1)(n+2) \cdots (n+m)}{m+1}\] [b](b)[/b] Let $P(x)$ be a polynomial with rational coefficients and degree $m.$ If $n$ tends to infinity, then prove that \[\frac{\sum_{k=1}^n P(k)}{n^{m+1}}\] Has a limit.

2013 BMT Spring, 6

The [i]minimal polynomial[/i] of a complex number $r$ is the unique polynomial with rational coefficients of minimal degree with leading coefficient $1$ that has $r$ as a root. If $f$ is the minimal polynomial of $\cos\frac\pi7$, what is $f(-1)$?

2019 AMC 12/AHSME, 21

How many quadratic polynomials with real coefficients are there such that the set of roots equals the set of coefficients? (For clarification: If the polynomial is $ax^2+bx+c,a\neq 0,$ and the roots are $r$ and $s,$ then the requirement is that $\{a,b,c\}=\{r,s\}$.) $\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } \text{infinitely many}$

2008 Iran MO (3rd Round), 3

a) Prove that there are two polynomials in $ \mathbb Z[x]$ with at least one coefficient larger than 1387 such that coefficients of their product is in the set $ \{\minus{}1,0,1\}$. b) Does there exist a multiple of $ x^2\minus{}3x\plus{}1$ such that all of its coefficient are in the set $ \{\minus{}1,0,1\}$

1989 Iran MO (2nd round), 2

Let $n$ be a positive integer. Prove that the polynomial \[P(x)= \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}+...+x+1 \] Does not have any rational root.

2019 Romania National Olympiad, 4

Let $n \geq 3$ and $a_1,a_2,...,a_n$ be complex numbers different from $0$ with $|a_i| < 1$ for all $i \in \{1,2,...,n-1 \}.$ If the coefficients of $f = \prod_{i=1}^n (X-a_i)$ are integers, prove that $\textbf{a)}$ The numbers $a_1,a_2,...,a_n$ are distinct. $\textbf{b)}$ If $a_j^2 = a_ia_k,$ then $i=j=k.$

1986 AIME Problems, 11

The polynomial $1-x+x^2-x^3+\cdots+x^{16}-x^{17}$ may be written in the form $a_0+a_1y+a_2y^2+\cdots +a_{16}y^{16}+a_{17}y^{17}$, where $y=x+1$ and thet $a_i$'s are constants. Find the value of $a_2$.

2013 India IMO Training Camp, 2

Let $n \ge 2$ be an integer and $f_1(x), f_2(x), \ldots, f_{n}(x)$ a sequence of polynomials with integer coefficients. One is allowed to make moves $M_1, M_2, \ldots $ as follows: in the $k$-th move $M_k$ one chooses an element $f(x)$ of the sequence with degree of $f$ at least $2$ and replaces it with $(f(x) - f(k))/(x-k)$. The process stops when all the elements of the sequence are of degree $1$. If $f_1(x) = f_2(x) = \cdots = f_n(x) = x^n + 1$, determine whether or not it is possible to make appropriate moves such that the process stops with a sequence of $n$ identical polynomials of degree 1.

2010 Peru IMO TST, 2

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2010 AMC 12/AHSME, 23

Monic quadratic polynomials $ P(x)$ and $ Q(x)$ have the property that $ P(Q(x))$ has zeroes at $ x\equal{}\minus{}23,\minus{}21,\minus{}17, \text{and} \minus{}15$, and $ Q(P(x))$ has zeroes at $ x\equal{}\minus{}59, \minus{}57, \minus{}51, \text{and} \minus{}49$. What is the sum of the minimum values of $ P(x)$ and $ Q(x)$? $ \textbf{(A)}\ \text{\minus{}100} \qquad \textbf{(B)}\ \text{\minus{}82} \qquad \textbf{(C)}\ \text{\minus{}73} \qquad \textbf{(D)}\ \text{\minus{}64} \qquad \textbf{(E)}\ 0$

1979 Austrian-Polish Competition, 2

Find all polynomials of the form $$P_n(x)=n!x^n+a_{n-1}x^{n-1}+\dots+a_1x+(-1)^n(n+1)$$ with integer coefficients, having $n$ real roots $x_1,\dots,x_n$ satisfying $k \leq x_k \leq k+1$ for $k=1, \dots,n$.

2016 IFYM, Sozopol, 2

We are given a polynomial $f(x)=x^6-11x^4+36x^2-36$. Prove that for an arbitrary prime number $p$, $f(x)\equiv 0\pmod{p}$ has a solution.

2016 Postal Coaching, 5

A real polynomial of odd degree has all positive coefficients. Prove that there is a (possibly trivial) permutation of the coefficients such that the resulting polynomial has exactly one real zero.

2023 Francophone Mathematical Olympiad, 1

Let $P(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ be a polynomial with real coefficients such that $0 \leqslant a_i \leqslant a_0$ for $i = 1, 2, \ldots, n$. Prove that, if $P(X)^2 = b_{2n} X^{2n} + b_{2n-1} X^{2n-1} + \cdots + b_{n+1} X^{n+1} + \cdots + b_1 X + b_0$, then $4 b_{n+1} \leqslant P(1)^2$.

2009 Harvard-MIT Mathematics Tournament, 4

Let $P$ be a fourth degree polynomial, with derivative $P^\prime$, such that $P(1)=P(3)=P(5)=P^\prime (7)=0$. Find the real number $x\neq 1,3,5$ such that $P(x)=0$.

2007 Finnish National High School Mathematics Competition, 5

Show that there exists a polynomial $P(x)$ with integer coefficients, such that the equation $P(x) = 0$ has no integer solutions, but for each positive integer $n$ there is an $x \in \Bbb{Z}$ such that $n \mid P(x).$

PEN F Problems, 15

Find all rational numbers $k$ such that $0 \le k \le \frac{1}{2}$ and $\cos k \pi$ is rational.

2009 District Olympiad, 4

Let $K$ be a finite field with $q$ elements and let $n \ge q$ be an integer. Find the probability that by choosing an $n$-th degree polynomial with coefficients in $K,$ it doesn't have any root in $K.$

2020 Iran Team Selection Test, 3

We call a number $n$ [i]interesting [/i]if for each permutation $\sigma$ of $1,2,\ldots,n$ there exist polynomials $P_1,P_2,\ldots ,P_n$ and $\epsilon > 0$ such that: $i)$ $P_1(0)=P_2(0)=\ldots =P_n(0)$ $ii)$ $P_1(x)>P_2(x)>\ldots >P_n(x)$ for $-\epsilon<x<0$ $iii)$ $P_{\sigma (1)} (x)>P_{\sigma (2)}(x)> \ldots >P_{\sigma (n)} (x) $ for $0<x<\epsilon$ Find all [i]interesting [/i]$n$. [i]Proposed by Mojtaba Zare Bidaki[/i]

2024 Mexican University Math Olympiad, 2

Let \( A \) and \( B \) be two square matrices with complex entries such that \( A + B = AB \), \( A = A^* \), and \( A \) has all distinct eigenvalues. Prove that there exists a polynomial \( P \) with complex coefficients such that \( P(A) = B \).

2010 Iran MO (3rd Round), 4

For each polynomial $p(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ we define it's derivative as this and we show it by $p'(x)$: \[p'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+2a_2x+a_1\] a) For each two polynomials $p(x)$ and $q(x)$ prove that:(3 points) \[(p(x)q(x))'=p'(x)q(x)+p(x)q'(x)\] b) Suppose that $p(x)$ is a polynomial with degree $n$ and $x_1,x_2,...,x_n$ are it's zeros. prove that:(3 points) \[\frac{p'(x)}{p(x)}=\sum_{i=1}^{n}\frac{1}{x-x_i}\] c) $p(x)$ is a monic polynomial with degree $n$ and $z_1,z_2,...,z_n$ are it's zeros such that: \[|z_1|=1, \quad \forall i\in\{2,..,n\}:|z_i|\le1\] Prove that $p'(x)$ has at least one zero in the disc with length one with the center $z_1$ in complex plane. (disc with length one with the center $z_1$ in complex plane: $D=\{z \in \mathbb C: |z-z_1|\le1\}$)(20 points)

2009 Tuymaada Olympiad, 4

Determine the maximum number $ h$ satisfying the following condition: for every $ a\in [0,h]$ and every polynomial $ P(x)$ of degree 99 such that $ P(0)\equal{}P(1)\equal{}0$, there exist $ x_1,x_2\in [0,1]$ such that $ P(x_1)\equal{}P(x_2)$ and $ x_2\minus{}x_1\equal{}a$. [i]Proposed by F. Petrov, D. Rostovsky, A. Khrabrov[/i]

2006 China Team Selection Test, 3

Find all second degree polynomial $d(x)=x^{2}+ax+b$ with integer coefficients, so that there exists an integer coefficient polynomial $p(x)$ and a non-zero integer coefficient polynomial $q(x)$ that satisfy: \[\left( p(x) \right)^{2}-d(x) \left( q(x) \right)^{2}=1, \quad \forall x \in \mathbb R.\]