This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2017 Harvard-MIT Mathematics Tournament, 1

Let $Q(x)=a_0+a_1x+\dots+a_nx^n$ be a polynomial with integer coefficients, and $0\le a_i<3$ for all $0\le i\le n$. Given that $Q(\sqrt{3})=20+17\sqrt{3}$, compute $Q(2)$.

2018 Brazil Team Selection Test, 1

Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$ If $M>1$, prove that the polynomial $$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$ has no positive roots.

2014-2015 SDML (High School), 7

Let $a$, $b$, and $c$ be the roots of the polynomial $$x^3+4x^2-7x-1.$$ Which of the following has roots $ab$, $bc$, and $ac$? $\text{(A) }x^3-4x^2+7x-1\qquad\text{(B) }x^3-7x^2+4x-1\qquad\text{(C) }x^3+7x^2-4x-1\qquad\text{(D) }x^3-4x^2+7x+1\qquad\text{(E) }x^3+7x^2-4x+1$

1968 Yugoslav Team Selection Test, Problem 5

Let $n$ be an integer greater than $1$. Let $x\in\mathbb R$. (a) Evaluate $S(x,n)=\sum(x+p)(x+q)$, where the summation is over all pairs $(p,q)$ of different numbers from $\{1,2,\ldots,n\}$. (b) Do there exist integers $x,n$ for which $S(x,n)=0$?

2013 Romania Team Selection Test, 1

Let $a$ and $b$ be two square-free, distinct natural numbers. Show that there exist $c>0$ such that \[ \left | \{n\sqrt{a}\}-\{n\sqrt{b}\} \right |>\frac{c}{n^3}\] for every positive integer $n$.

2015 AMC 10, 23

The zeroes of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of all possible values of $a$? $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

2024 India IMOTC, 17

Fix a positive integer $a > 1$. Consider triples $(f(x), g(x), h(x))$ of polynomials with integer coefficients, such that 1. $f$ is a monic polynomial with $\deg f \ge 1$. 2. There exists a positive integer $N$ such that $g(x)>0$ for $x \ge N$ and for all positive integers $n \ge N$, we have $f(n) \mid a^{g(n)} + h(n)$. Find all such possible triples. [i]Proposed by Mainak Ghosh and Rijul Saini[/i]

2004 Junior Balkan Team Selection Tests - Moldova, 6

Represent the polynomial $P(X) = X^{100} + X^{20} + 1$ as the product of 4 polynomials with integer coefficients.

2010 Tuymaada Olympiad, 3

Let $f(x) = ax^2+bx+c$ be a quadratic trinomial with $a$,$b$,$c$ reals such that any quadratic trinomial obtained by a permutation of $f$'s coefficients has an integer root (including $f$ itself). Show that $f(1)=0$.

2005 AIME Problems, 8

The equation \[2^{333x-2}+2^{111x+2}=2^{222x+1}+1\] has three real roots. Given that their sum is $m/n$ where $m$ and $n$ are relatively prime positive integers, find $m+n$.

1976 Canada National Olympiad, 7

Let $ P(x,y)$ be a polynomial in two variables $ x,y$ such that $ P(x,y)\equal{}P(y,x)$ for every $ x,y$ (for example, the polynomial $ x^2\minus{}2xy\plus{}y^2$ satisfies this condition). Given that $ (x\minus{}y)$ is a factor of $ P(x,y)$, show that $ (x\minus{}y)^2$ is a factor of $ P(x,y)$.

1982 AMC 12/AHSME, 12

Let $f(x) = ax^7+bx^3+cx-5$, where $a,b$ and $c$ are constants. If $f(-7) = 7$, the $f(7)$ equals $\textbf {(A) } -17 \qquad \textbf {(B) } -7 \qquad \textbf {(C) } 14 \qquad \textbf {(D) } 21\qquad \textbf {(E) } \text{not uniquely determined}$

2007 China Team Selection Test, 3

Consider a $ 7\times 7$ numbers table $ a_{ij} \equal{} (i^2 \plus{} j)(i \plus{} j^2), 1\le i,j\le 7.$ When we add arbitrarily each term of an arithmetical progression consisting of $ 7$ integers to corresponding to term of certain row (or column) in turn, call it an operation. Determine whether such that each row of numbers table is an arithmetical progression, after a finite number of operations.

1963 IMO Shortlist, 5

Prove that $\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}$

2019 Serbia National Math Olympiad, 2

For the sequence of real numbers $a_1,a_2,\dots ,a_k$ we say it is [i]invested[/i] on the interval $[b,c]$ if there exists numbers $x_0,x_1,\dots ,x_k$ in the interval $[b,c]$ such that $|x_i-x_{i-1}|=a_i$ for $i=1,2,3,\dots k$ . A sequence is [i]normed[/i] if all its members are not greater than $1$ . For a given natural $n$ , prove : a)Every [i]normed[/i] sequence of length $2n+1$ is [i]invested[/i] in the interval $\left[ 0, 2-\frac{1}{2^n} \right ]$. b) there exists [i]normed[/i] sequence of length $4n+3$ wich is not [i]invested[/i] on $\left[ 0, 2-\frac{1}{2^n} \right ]$.

2024 Brazil Undergrad MO, 2

For each pair of integers \( j, k \geq 2 \), define the function \( f_{jk} : \mathbb{R} \to \mathbb{R} \) given by \[ f_{jk}(x) = 1 - (1 - x^j)^k. \] (a) Prove that for any integers \( j, k \geq 2 \), there exists a unique real number \( p_{jk} \in (0, 1) \) such that \( f_{jk}(p_{jk}) = p_{jk} \). Furthermore, defining \( \lambda_{jk} := f'_{jk}(p_{jk}) \), prove that \( \lambda_{jk} > 1 \). (b) Prove that \( p^j_{jk} = 1 - p_{kj} \) for any integers \( j, k \geq 2 \). (c) Prove that \( \lambda_{jk} = \lambda_{kj} \) for any integers \( j, k \geq 2 \).

1965 AMC 12/AHSME, 22

If $ a_2 \neq 0$ and $ r$ and $ s$ are the roots of $ a_0 \plus{} a_1x \plus{} a_2x^2 \equal{} 0$, then the equality $ a_0 \plus{} a_1x \plus{} a_2x^2 \equal{} a_0\left (1 \minus{} \frac {x}{r} \right ) \left (1 \minus{} \frac {x}{s} \right )$ holds: $ \textbf{(A)}\ \text{for all values of }x, a_0\neq 0$ $ \textbf{(B)}\ \text{for all values of }x$ $ \textbf{(C)}\ \text{only when }x \equal{} 0$ $ \textbf{(D)}\ \text{only when }x \equal{} r \text{ or }x \equal{} s$ $ \textbf{(E)}\ \text{only when }x \equal{} r \text{ or }x \equal{} s, a_0 \neq 0$

2008 IberoAmerican, 3

Let $ P(x) \equal{} x^3 \plus{} mx \plus{} n$ be an integer polynomial satisfying that if $ P(x) \minus{} P(y)$ is divisible by 107, then $ x \minus{} y$ is divisible by 107 as well, where $ x$ and $ y$ are integers. Prove that 107 divides $ m$.

2013 ELMO Shortlist, 3

Find all $f:\mathbb{R}\to\mathbb{R}$ such that for all $x,y\in\mathbb{R}$, $f(x)+f(y) = f(x+y)$ and $f(x^{2013}) = f(x)^{2013}$. [i]Proposed by Calvin Deng[/i]

1980 AMC 12/AHSME, 2

The degree of $(x^2+1)^4 (x^3+1)^3$ as a polynomial in $x$ is $\text{(A)} \ 5 \qquad \text{(B)} \ 7 \qquad \text{(C)} \ 12 \qquad \text{(D)} \ 17 \qquad \text{(E)} \ 72$

PEN A Problems, 6

[list=a][*] Find infinitely many pairs of integers $a$ and $b$ with $1<a<b$, so that $ab$ exactly divides $a^{2}+b^{2}-1$. [*] With $a$ and $b$ as above, what are the possible values of \[\frac{a^{2}+b^{2}-1}{ab}?\] [/list]

2019 Brazil Undergrad MO, 1

Let $ I $ and $ 0 $ be the square identity and null matrices, both of size $ 2019 $. There is a square matrix $A$ with rational entries and size $ 2019 $ such that: a) $ A ^ 3 + 6A ^ 2-2I = 0 $? b) $ A ^ 4 + 6A ^ 3-2I = 0 $?

2014 ELMO Shortlist, 7

Find all positive integers $n$ with $n \ge 2$ such that the polynomial \[ P(a_1, a_2, ..., a_n) = a_1^n+a_2^n + ... + a_n^n - n a_1 a_2 ... a_n \] in the $n$ variables $a_1$, $a_2$, $\dots$, $a_n$ is irreducible over the real numbers, i.e. it cannot be factored as the product of two nonconstant polynomials with real coefficients. [i]Proposed by Yang Liu[/i]

2012 IFYM, Sozopol, 3

The polynomial $p(x)$ is of degree $9$ and $p(x)-1$ is exactly divisible by $(x-1)^{5}$. Given that $p(x) + 1$ is exactly divisible by $(x+1)^{5}$, find $p(x)$.

1999 USAMO, 3

Let $p > 2$ be a prime and let $a,b,c,d$ be integers not divisible by $p$, such that \[ \left\{ \dfrac{ra}{p} \right\} + \left\{ \dfrac{rb}{p} \right\} + \left\{ \dfrac{rc}{p} \right\} + \left\{ \dfrac{rd}{p} \right\} = 2 \] for any integer $r$ not divisible by $p$. Prove that at least two of the numbers $a+b$, $a+c$, $a+d$, $b+c$, $b+d$, $c+d$ are divisible by $p$. (Note: $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of $x$.)