This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 89

2014 Korea Junior Math Olympiad, 4

Positive integers $p, q, r$ satisfy $gcd(a,b,c) = 1$. Prove that there exists an integer $a$ such that $gcd(p,q+ar) = 1$.

2018 Bosnia and Herzegovina EGMO TST, 2

Prove that for every pair of positive integers $(m,n)$, bigger than $2$, there exists positive integer $k$ and numbers $a_0,a_1,...,a_k$, which are bigger than $2$, such that $a_0=m$, $a_1=n$ and for all $i=0,1,...,k-1$ holds $$ a_i+a_{i+1} \mid a_ia_{i+1}+1$$

1987 Brazil National Olympiad, 3

Two players play alternately. The first player is given a pair of positive integers $(x_1, y_1)$. Each player must replace the pair $(x_n, y_n)$ that he is given by a pair of non-negative integers $(x_{n+1}, y_{n+1})$ such that $x_{n+1} = min(x_n, y_n)$ and $y_{n+1} = max(x_n, y_n)- k\cdot x_{n+1}$ for some positive integer $k$. The first player to pass on a pair with $y_{n+1} = 0$ wins. Find for which values of $x_1/y_1$ the first player has a winning strategy.

2017 JBMO Shortlist, NT3

Find all pairs of positive integers $(x,y)$ such that $2^x + 3^y$ is a perfect square.

1982 Brazil National Olympiad, 2

Any positive integer $n$ can be written in the form $n = 2^b(2c+1)$. We call $2c+1$ the[i] odd part[/i] of $n$. Given an odd integer $n > 0$, define the sequence $ a_0, a_1, a_2, ...$ as follows: $a_0 = 2^n-1, a_{k+1} $ is the [i]odd part[/i] of $3a_k+1$. Find $a_n$.

2010 IMO Shortlist, 6

Suppose that $f$ and $g$ are two functions defined on the set of positive integers and taking positive integer values. Suppose also that the equations $f(g(n)) = f(n) + 1$ and $g(f(n)) = g(n) + 1$ hold for all positive integers. Prove that $f(n) = g(n)$ for all positive integer $n.$ [i]Proposed by Alex Schreiber, Germany[/i]

2015 Kyiv Math Festival, P3

Is it true that every positive integer greater than $100$ is a sum of $4$ positive integers such that each two of them have a common divisor greater than $1$?

2007 JBMO Shortlist, 4

Let $a$ and $ b$ be positive integers bigger than $2$. Prove that there exists a positive integer $k$ and a sequence $n_1, n_2, ..., n_k$ consisting of positive integers, such that $n_1 = a,n_k = b$, and $(n_i + n_{i+1}) | n_in_{i+1}$ for all $i = 1,2,..., k - 1$

2013 Korea Junior Math Olympiad, 3

$\{a_n\}$ is a positive integer sequence such that $a_{i+2} = a_{i+1} +a_i$ (for all $i \ge 1$). For positive integer $n$, de fine as $$b_n=\frac{1}{a_{2n+1}}\Sigma_{i=1}^{4n-2}a_i$$ Prove that $b_n$ is positive integer.

2006 Korea Junior Math Olympiad, 5

Find all positive integers that can be written in the following way $\frac{m^2 + 20mn + n^2}{m^3 + n^3}$ Also, $m,n$ are relatively prime positive integers.

2024 CAPS Match, 6

Determine whether there exist infinitely many triples $(a, b, c)$ of positive integers such that every prime $p$ divides \[\left\lfloor\left(a+b\sqrt{2024}\right)^p\right\rfloor-c.\]

1974 Vietnam National Olympiad, 1

Find all positive integers $n$ and $b$ with $0 < b < 10$ such that if $a_n$ is the positive integer with $n$ digits, all of them $1$, then $a_{2n} - b a_n$ is a square.

2001 Bosnia and Herzegovina Team Selection Test, 2

For positive integers $x$, $y$ and $z$ holds $\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{z^2}$. Prove that $xyz\geq 3600$

2008 India Regional Mathematical Olympiad, 5

Let $N$ be a ten digit positive integer divisible by $7$. Suppose the first and the last digit of $N$ are interchanged and the resulting number (not necessarily ten digit) is also divisible by $7$ then we say that $N$ is a good integer. How many ten digit good integers are there?

1991 Nordic, 3

Show that $ \frac{1}{2^2} +\frac{1}{3^2} +...+\frac{1}{n^2} <\frac{2}{3}$ for all $n \ge 2 $.

2013 JBMO Shortlist, 5

Solve in positive integers: $\frac{1}{x^2}+\frac{y}{xz}+\frac{1}{z^2}=\frac{1}{2013}$ .

1983 Austrian-Polish Competition, 4

The set $N$ has been partitioned into two sets A and $B$. Show that for every $n \in N$ there exist distinct integers $a, b > n$ such that $a, b, a + b$ either all belong to $A$ or all belong to $B$.

2015 JBMO Shortlist, C3

Positive integers are put into the following table. \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|} \hline 1 & 3 & 6 & 10 & 15 & 21 & 28 & 36 & & \\ \hline 2 & 5 & 9 & 14 & 20 & 27 & 35 & 44 & & \\ \hline 4 & 8 & 13 & 19 & 26 & 34 & 43 & 53 & & \\ \hline 7 & 12 & 18 & 25 & 33 & 42 & & & & \\ \hline 11 & 17 & 24 & 32 & 41 & & & & & \\ \hline 16 & 23 & & & & & & & & \\ \hline ... & & & & & & & & & \\ \hline ... & & & & & & & & & \\ \hline \end{tabular} Find the number of the line and column where the number $2015$ stays.

2016 Lusophon Mathematical Olympiad, 1

Consider $10$ distinct positive integers that are all prime to each other (that is, there is no a prime factor common to all), but such that any two of them are not prime to each other. What is the smallest number of distinct prime factors that may appear in the product of $10$ numbers?

2015 Dutch IMO TST, 5

Let $N$ be the set of positive integers. Find all the functions $f: N\to N$ with $f (1) = 2$ and such that $max \{f(m)+f(n), m+n\}$ divides $min\{2m+2n,f (m+ n)+1\}$ for all $m, n$ positive integers

2017 Czech-Polish-Slovak Match, 1

Find all positive real numbers $c$ such that there are in finitely many pairs of positive integers $(n,m)$ satisfying the following conditions: $n \ge m+c\sqrt{m - 1}+1$ and among numbers $n. n+1,.... 2n-m$ there is no square of an integer. (Slovakia)

1983 Brazil National Olympiad, 1

Show that there are only finitely many solutions to $1/a + 1/b + 1/c = 1/1983$ in positive integers.

2014 India Regional Mathematical Olympiad, 3

Find all pairs of $(x, y)$ of positive integers such that $2x + 7y$ divides $7x + 2y$.

2002 Rioplatense Mathematical Olympiad, Level 3, 2

Let $\lambda$ be a real number such that the inequality $0 <\sqrt {2002} - \frac {a} {b} <\frac {\lambda} {ab}$ holds for an infinite number of pairs $ (a, b)$ of positive integers. Prove that $\lambda \geq 5 $.

2010 Singapore Junior Math Olympiad, 3

Let $a_1, a_2, ..., a_n$ be positive integers, not necessarily distinct but with at least five distinct values. Suppose that for any $1 \le i < j \le n$, there exist $k,\ell$, both different from $i$ and $j$ such that $a_i + a_j = a_k + a_{\ell}$. What is the smallest possible value of $n$?