This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 343

2012 All-Russian Olympiad, 2

The points $A_1,B_1,C_1$ lie on the sides $BC,CA$ and $AB$ of the triangle $ABC$ respectively. Suppose that $AB_1-AC_1=CA_1-CB_1=BC_1-BA_1$. Let $O_A,O_B$ and $O_C$ be the circumcentres of triangles $AB_1C_1,A_1BC_1$ and $A_1B_1C$ respectively. Prove that the incentre of triangle $O_AO_BO_C$ is the incentre of triangle $ABC$ too.

Russian TST 2018, P2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2014 ELMO Shortlist, 6

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$. [i]Proposed by Yang Liu[/i]

2017 IMO Shortlist, G4

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2018 Germany Team Selection Test, 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2012 ELMO Shortlist, 6

In $\triangle ABC$, $H$ is the orthocenter, and $AD,BE$ are arbitrary cevians. Let $\omega_1, \omega_2$ denote the circles with diameters $AD$ and $BE$, respectively. $HD,HE$ meet $\omega_1,\omega_2$ again at $F,G$. $DE$ meets $\omega_1,\omega_2$ again at $P_1,P_2$ respectively. $FG$ meets $\omega_1,\omega_2$ again $Q_1,Q_2$ respectively. $P_1H,Q_1H$ meet $\omega_1$ at $R_1,S_1$ respectively. $P_2H,Q_2H$ meet $\omega_2$ at $R_2,S_2$ respectively. Let $P_1Q_1\cap P_2Q_2 = X$, and $R_1S_1\cap R_2S_2=Y$. Prove that $X,Y,H$ are collinear. [i]Ray Li.[/i]

2010 Vietnam Team Selection Test, 2

Let $ABC$ be a triangle with $ \widehat{BAC}\neq 90^\circ $. Let $M$ be the midpoint of $BC$. We choose a variable point $D$ on $AM$. Let $(O_1)$ and $(O_2)$ be two circle pass through $ D$ and tangent to $BC$ at $B$ and $C$. The line $BA$ and $CA$ intersect $(O_1),(O_2)$ at $ P,Q$ respectively. [b]a)[/b] Prove that tangent line at $P$ on $(O_1)$ and $Q$ on $(O_2)$ must intersect at $S$. [b]b)[/b] Prove that $S$ lies on a fix line.

2011 IberoAmerican, 3

Let $ABC$ be a triangle and $X,Y,Z$ be the tangency points of its inscribed circle with the sides $BC, CA, AB$, respectively. Suppose that $C_1, C_2, C_3$ are circle with chords $YZ, ZX, XY$, respectively, such that $C_1$ and $C_2$ intersect on the line $CZ$ and that $C_1$ and $C_3$ intersect on the line $BY$. Suppose that $C_1$ intersects the chords $XY$ and $ZX$ at $J$ and $M$, respectively; that $C_2$ intersects the chords $YZ$ and $XY$ at $L$ and $I$, respectively; and that $C_3$ intersects the chords $YZ$ and $ZX$ at $K$ and $N$, respectively. Show that $I, J, K, L, M, N$ lie on the same circle.

2006 National Olympiad First Round, 1

Let $ABC$ be an equilateral triangle. $D$ and $E$ are midpoints of $[AB]$ and $[AC]$. The ray $[DE$ cuts the circumcircle of $\triangle ABC$ at $F$. What is $\frac {|DE|}{|DF|}$? $ \textbf{(A)}\ \frac 12 \qquad\textbf{(B)}\ \frac {\sqrt 3}3 \qquad\textbf{(C)}\ \frac 23(\sqrt 3 - 1) \qquad\textbf{(D)}\ \frac 23 \qquad\textbf{(E)}\ \frac {\sqrt 5 - 1}2 $

2011 International Zhautykov Olympiad, 3

Diagonals of a cyclic quadrilateral $ABCD$ intersect at point $K.$ The midpoints of diagonals $AC$ and $BD$ are $M$ and $N,$ respectively. The circumscribed circles $ADM$ and $BCM$ intersect at points $M$ and $L.$ Prove that the points $K ,L ,M,$ and $ N$ lie on a circle. (all points are supposed to be different.)

2025 Ukraine National Mathematical Olympiad, 11.2

The lines \(AB\) and \(CD\), containing the lateral sides of the trapezoid \(ABCD\), intersect at point \(Q\). Inside the trapezoid \(ABCD\), a point \(P\) is chosen such that \(\angle APB = \angle CPD\). Prove that the circumcircles of triangles \(BPD\) and \(APC\) intersect again on the line \(PQ\). [i]Proposed by Mykhailo Shtandenko[/i]

2012 Iran Team Selection Test, 2

Consider $\omega$ is circumcircle of an acute triangle $ABC$. $D$ is midpoint of arc $BAC$ and $I$ is incenter of triangle $ABC$. Let $DI$ intersect $BC$ in $E$ and $\omega$ for second time in $F$. Let $P$ be a point on line $AF$ such that $PE$ is parallel to $AI$. Prove that $PE$ is bisector of angle $BPC$. [i]Proposed by Mr.Etesami[/i]

2011 Puerto Rico Team Selection Test, 4

Let $P$ be a point inside the triangle $ABC$, such that the angles $\angle CBP$ and $\angle PAC$ are equal. Denote the intersection of the line $AP$ and the segment $BC$ by $D$, and the intersection of the line $BP$ with the segment $AC$ by $E$. The circumcircles of the triangles $ADC$ and $BEC$ meet at $C$ and $F$. Show that the line $CP$ bisects the angle $DFE$. Please remember to hide your solution. (by using the hide tags of course.. I don't literally mean that you should hide it :ninja: )

2008 All-Russian Olympiad, 3

A circle $ \omega$ with center $ O$ is tangent to the rays of an angle $ BAC$ at $ B$ and $ C$. Point $ Q$ is taken inside the angle $ BAC$. Assume that point $ P$ on the segment $ AQ$ is such that $ AQ\perp OP$. The line $ OP$ intersects the circumcircles $ \omega_{1}$ and $ \omega_{2}$ of triangles $ BPQ$ and $ CPQ$ again at points $ M$ and $ N$. Prove that $ OM \equal{} ON$.

2011 Korea - Final Round, 2

$ABC$ is an acute triangle. $P$(different from $B,C$) is a point on side $BC$. $H$ is an orthocenter, and $D$ is a foot of perpendicular from $H$ to $AP$. The circumcircle of the triangle $ABD$ and $ACD$ is $O _1$ and $O_2$, respectively. A line $l$ parallel to $BC$ passes $D$ and meet $O_1$ and $O_2$ again at $X$ and $Y$, respectively. $l$ meets $AB$ at $E$, and $AC$ at $F$. Two lines $XB$ and $YC$ intersect at $Z$. Prove that $ZE=ZF$ is a necessary and sufficient condition for $BP=CP$.

2024 Bangladesh Mathematical Olympiad, P2

In a cyclic quadrilateral $ABCD$, the diagonals intersect at $E$. $F$ and $G$ are on chord $AC$ and chord $BD$ respectively such that $AF = BE$ and $DG = CE$. Prove that, $A, G, F, D$ lie on the same circle.

1970 IMO Longlists, 21

In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$

2006 Balkan MO, 2

Let $ABC$ be a triangle and $m$ a line which intersects the sides $AB$ and $AC$ at interior points $D$ and $F$, respectively, and intersects the line $BC$ at a point $E$ such that $C$ lies between $B$ and $E$. The parallel lines from the points $A$, $B$, $C$ to the line $m$ intersect the circumcircle of triangle $ABC$ at the points $A_1$, $B_1$ and $C_1$, respectively (apart from $A$, $B$, $C$). Prove that the lines $A_1E$ , $B_1F$ and $C_1D$ pass through the same point. [i]Greece[/i]

2011 Iran MO (3rd Round), 1

We have $4$ circles in plane such that any two of them are tangent to each other. we connect the tangency point of two circles to the tangency point of two other circles. Prove that these three lines are concurrent. [i]proposed by Masoud Nourbakhsh[/i]

2008 Vietnam Team Selection Test, 2

Let $ k$ be a positive real number. Triangle ABC is acute and not isosceles, O is its circumcenter and AD,BE,CF are the internal bisectors. On the rays AD,BE,CF, respectively, let points L,M,N such that $ \frac {AL}{AD} \equal{} \frac {BM}{BE} \equal{} \frac {CN}{CF} \equal{} k$. Denote $ (O_1),(O_2),(O_3)$ be respectively the circle through L and touches OA at A, the circle through M and touches OB at B, the circle through N and touches OC at C. 1) Prove that when $ k \equal{} \frac{1}{2}$, three circles $ (O_1),(O_2),(O_3)$ have exactly two common points, the centroid G of triangle ABC lies on that common chord of these circles. 2) Find all values of k such that three circles $ (O_1),(O_2),(O_3)$ have exactly two common points

2008 Bulgaria Team Selection Test, 2

In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.

2021 AIME Problems, 13

Circles $\omega_1$ and $\omega_2$ with radii $961$ and $625$, respectively, intersect at distinct points $A$ and $B$. A third circle $\omega$ is externally tangent to both $\omega_1$ and $\omega_2$. Suppose line $AB$ intersects $\omega$ at two points $P$ and $Q$ such that the measure of minor arc $\widehat{PQ}$ is $120^{\circ}$. Find the distance between the centers of $\omega_1$ and $\omega_2$.

2008 Hong Kong TST, 3

Let $ ABCDE$ be an arbitrary convex pentagon. Suppose that $ BD\cap CE \equal{} A'$, $ CE \cap DA \equal{} B'$, $ DA\cap EB \equal{} C'$, $ EB\cap AC \equal{} D'$ and $ AC \cap BD \equal{} E'$. Suppose also that $ (ABD')\cap (AC'E) \equal{} A''$, $ (BCE')\cap (BD'A) \equal{} B''$, $ (CDA')\cap (CE'B) \equal{} C''$, $ (DEB')\cap DA'C \equal{} D''$ and $ (EAC')\cap (EB'D) \equal{} E''$. Prove that $ AA''$, $ BB''$, $ CC''$, $ DD''$ and $ EE''$ are concurrent.

2005 JBMO Shortlist, 1

Let $ABC$ be an acute-angled triangle inscribed in a circle $k$. It is given that the tangent from $A$ to the circle meets the line $BC$ at point $P$. Let $M$ be the midpoint of the line segment $AP$ and $R$ be the second intersection point of the circle $k$ with the line $BM$. The line $PR$ meets again the circle $k$ at point $S$ different from $R$. Prove that the lines $AP$ and $CS$ are parallel.

2007 Junior Balkan Team Selection Tests - Romania, 2

Let $ABCD$ be a trapezium $(AB \parallel CD)$ and $M,N$ be the intersection points of the circles of diameters $AD$ and $BC$. Prove that $O \in MN$, where $O \in AC \cap BD$.