Found problems: 343
2012 Puerto Rico Team Selection Test, 5
A point $P$ is outside of a circle and the distance to the center is $13$. A secant line from $P$ meets the circle at $Q$ and $R$ so that the exterior segment of the secant, $PQ$, is $9$ and $QR$ is $7$. Find the radius of the circle.
2009 IMO Shortlist, 4
Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$.
[i]Proposed by David Monk, United Kingdom[/i]
2005 Morocco TST, 4
Let $ABCD$ be a cyclic qudrilaterlal such that $AB.BC=2.CD.DA$
Prove that $8.BD^2 \leq 9.AC^2$
2013 NIMO Problems, 4
Let $a,b,c$ be the answers to problems $4$, $5$, and $6$, respectively. In $\triangle ABC$, the measures of $\angle A$, $\angle B$, and $\angle C$ are $a$, $b$, $c$ in degrees, respectively. Let $D$ and $E$ be points on segments $AB$ and $AC$ with $\frac{AD}{BD} = \frac{AE}{CE} = 2013$. A point $P$ is selected in the interior of $\triangle ADE$, with barycentric coordinates $(x,y,z)$ with respect to $\triangle ABC$ (here $x+y+z=1$). Lines $BP$ and $CP$ meet line $DE$ at $B_1$ and $C_1$, respectively. Suppose that the radical axis of the circumcircles of $\triangle PDC_1$ and $\triangle PEB_1$ pass through point $A$. Find $100x$.
[i]Proposed by Evan Chen[/i]
2010 Junior Balkan Team Selection Tests - Romania, 4
Let $I$ be the incenter of scalene triangle ABC and denote by $a,$ $b$ the circles with diameters $IC$ and $IB$, respectively. If $c,$ $d$ mirror images of $a,$ $b$ in $IC$ and $IB$ prove that the circumcenter $O$ of triangle $ABC$ lies on the radical axis of $c$ and $d$.
2008 Junior Balkan MO, 2
The vertices $ A$ and $ B$ of an equilateral triangle $ ABC$ lie on a circle $k$ of radius $1$, and the vertex $ C$ is in the interior of the circle $ k$. A point $ D$, different from $ B$, lies on $ k$ so that $ AD\equal{}AB$. The line $ DC$ intersects $ k$ for the second time at point $ E$. Find the length of the line segment $ CE$.
2018 Morocco TST., 3
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
2010 Indonesia TST, 2
Circles $ \Gamma_1$ and $ \Gamma_2$ are internally tangent to circle $ \Gamma$ at $ P$ and $ Q$, respectively. Let $ P_1$ and $ Q_1$ are on $ \Gamma_1$ and $ \Gamma_2$ respectively such that $ P_1Q_1$ is the common tangent of $ P_1$ and $ Q_1$. Assume that $ \Gamma_1$ and $ \Gamma_2$ intersect at $ R$ and $ R_1$. Define $ O_1,O_2,O_3$ as the intersection of $ PQ$ and $ P_1Q_1$, the intersection of $ PR$ and $ P_1R_1$, and the intersection $ QR$ and $ Q_1R_1$. Prove that the points $ O_1,O_2,O_3$ are collinear.
[i]Rudi Adha Prihandoko, Bandung[/i]
2024 Bangladesh Mathematical Olympiad, P9
Let $ABC$ be a triangle and $M$ be the midpoint of side $BC$. The perpendicular bisector of $BC$ intersects the circumcircle of $\triangle ABC$ at points $K$ and $L$ ($K$ and $A$ lie on the opposite sides of $BC$). A circle passing through $L$ and $M$ intersects $AK$ at points $P$ and $Q$ ($P$ lies on the line segment $AQ$). $LQ$ intersects the circumcircle of $\triangle KMQ$ again at $R$. Prove that $BPCR$ is a cyclic quadrilateral.
1997 Romania Team Selection Test, 4
Let $ABC$ be a triangle, $D$ be a point on side $BC$, and let $\mathcal{O}$ be the circumcircle of triangle $ABC$. Show that the circles tangent to $\mathcal{O},AD,BD$ and to $\mathcal{O},AD,DC$ are tangent to each other if and only if $\angle BAD=\angle CAD$.
[i]Dan Branzei[/i]
2011 Romania Team Selection Test, 2
Let $ABCD$ be a convex quadrangle such that $AB=AC=BD$ (vertices are labelled in circular order). The lines $AC$ and $BD$ meet at point $O$, the circles $ABC$ and $ADO$ meet again at point $P$, and the lines $AP$ and $BC$ meet at the point $Q$. Show that the angles $COQ$ and $DOQ$ are equal.
2005 Junior Balkan Team Selection Tests - Moldova, 1
Let the triangle $ABC$ with $BC$ the smallest side. Let $P$ on ($AB$) such that angle $PCB$ equals angle $BAC$. and $Q$ on side ($AC$) such that angle $QBC$ equals angle $BAC$. Show that the line passing through the circumenters of triangles $ABC$ and $APQ$ is perpendicular on $BC$.
2011 Turkey Junior National Olympiad, 2
Let $ABC$ be a triangle with $|AB|=|AC|$. $D$ is the midpoint of $[BC]$. $E$ is the foot of the altitude from $D$ to $AC$. $BE$ cuts the circumcircle of triangle $ABD$ at $B$ and $F$. $DE$ and $AF$ meet at $G$. Prove that $|DG|=|GE|$
Croatia MO (HMO) - geometry, 2011.7
Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.
2013 ELMO Shortlist, 13
In $\triangle ABC$, $AB<AC$. $D$ and $P$ are the feet of the internal and external angle bisectors of $\angle BAC$, respectively. $M$ is the midpoint of segment $BC$, and $\omega$ is the circumcircle of $\triangle APD$. Suppose $Q$ is on the minor arc $AD$ of $\omega$ such that $MQ$ is tangent to $\omega$. $QB$ meets $\omega$ again at $R$, and the line through $R$ perpendicular to $BC$ meets $PQ$ at $S$. Prove $SD$ is tangent to the circumcircle of $\triangle QDM$.
[i]Proposed by Ray Li[/i]
2024 ELMO Problems, 1
In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic.
[i]Tiger Zhang[/i]
JBMO Geometry Collection, 2005
Let $ABC$ be an acute-angled triangle inscribed in a circle $k$. It is given that the tangent from $A$ to the circle meets the line $BC$ at point $P$. Let $M$ be the midpoint of the line segment $AP$ and $R$ be the second intersection point of the circle $k$ with the line $BM$. The line $PR$ meets again the circle $k$ at point $S$ different from $R$.
Prove that the lines $AP$ and $CS$ are parallel.
2004 Bulgaria Team Selection Test, 2
Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.
1960 AMC 12/AHSME, 32
In this figure the center of the circle is $O$. $AB \perp BC$, $ADOE$ is a straight line, $AP = AD$, and $AB$ has a length twice the radius. Then:
[asy]
size(150);
defaultpen(linewidth(0.8)+fontsize(10));
real e=350,c=55;
pair O=origin,E=dir(e),C=dir(c),B=dir(180+c),D=dir(180+e), rot=rotate(90,B)*O,A=extension(E,D,B,rot);
path tangent=A--B;
pair P=waypoint(tangent,abs(A-D)/abs(A-B));
draw(unitcircle^^C--B--A--E);
dot(A^^B^^C^^D^^E^^P,linewidth(2));
label("$O$",O,dir(290));
label("$A$",A,N);
label("$B$",B,SW);
label("$C$",C,NE);
label("$D$",D,dir(120));
label("$E$",E,SE);
label("$P$",P,SW);[/asy]
$ \textbf{(A)} AP^2 = PB \times AB\qquad$
$\textbf{(B)}\ AP \times DO = PB \times AD\qquad$
$\textbf{(C)}\ AB^2 = AD \times DE\qquad$
$\textbf{(D)}\ AB \times AD = OB \times AO\qquad$
$\textbf{(E)}\ \text{none of these} $
2004 AMC 12/AHSME, 18
Square $ ABCD$ has side length $ 2$. A semicircle with diameter $ \overline{AB}$ is constructed inside the square, and the tangent to the semicricle from $ C$ intersects side $ \overline{AD}$ at $ E$. What is the length of $ \overline{CE}$?
[asy]
defaultpen(linewidth(0.8));
pair A=origin, B=(1,0), C=(1,1), D=(0,1), X=tangent(C, (0.5,0), 0.5, 1), F=C+2*dir(C--X), E=intersectionpoint(C--F, A--D);
draw(C--D--A--B--C--E);
draw(Arc((0.5,0), 0.5, 0, 180));
pair point=(0.5,0.5);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));[/asy]
$ \textbf{(A)}\ \frac {2 \plus{} \sqrt5}{2} \qquad \textbf{(B)}\ \sqrt 5 \qquad \textbf{(C)}\ \sqrt 6 \qquad \textbf{(D)}\ \frac52 \qquad \textbf{(E)}\ 5 \minus{} \sqrt5$
2010 Contests, 3
Let $ABCD$ be a convex quadrilateral. such that $\angle CAB = \angle CDA$ and $\angle BCA = \angle ACD$. If $M$ be the midpoint of $AB$, prove that $\angle BCM = \angle DBA$.
2005 India IMO Training Camp, 1
For a given triangle ABC, let X be a variable point on the line BC such that the point C lies between the points B and X. Prove that the radical axis of the incircles of the triangles ABX and ACX passes through a point independent of X.
This is a slight extension of the [url=http://www.mathlinks.ro/Forum/viewtopic.php?t=41033]IMO Shortlist 2004 geometry problem 7[/url] and can be found, together with the proposed solution, among the files uploaded at http://www.mathlinks.ro/Forum/viewtopic.php?t=15622 . Note that the problem was proposed by Russia. I could not find the names of the authors, but I have two particular persons under suspicion. Maybe somebody could shade some light on this...
Darij
2011 Croatia Team Selection Test, 3
Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.
2015 USA TSTST, 2
Let ABC be a scalene triangle. Let $K_a$, $L_a$ and $M_a$ be the respective intersections with BC of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of $AK_aL_a$ intersects $AM_a$ a second time at point $X_a$ different from A. Define $X_b$ and $X_c$ analogously. Prove that the circumcenter of $X_aX_bX_c$ lies on the Euler line of ABC.
(The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocenter of ABC.)
[i]Proposed by Ivan Borsenco[/i]
2007 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a right triangle with $A = 90^{\circ}$ and $D \in (AC)$. Denote by $E$ the reflection of $A$ in the line $BD$ and $F$ the intersection point of $CE$ with the perpendicular in $D$ to $BC$. Prove that $AF, DE$ and $BC$ are concurrent.