Found problems: 343
Swiss NMO - geometry, 2011.8
Let $ABCD$ be a parallelogram and $H$ the Orthocentre of $\triangle{ABC}$. The line parallel to $AB$ through $H$ intersects $BC$ at $P$ and $AD$ at $Q$ while the line parallel to $BC$ through $H$ intersects $AB$ at $R$ and $CD$ at $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic.
[i](Swiss Mathematical Olympiad 2011, Final round, problem 8)[/i]
1983 AMC 12/AHSME, 27
A large sphere is on a horizontal field on a sunny day. At a certain time the shadow of the sphere reaches out a distance of $10$ m from the point where the sphere touches the ground. At the same instant a meter stick (held vertically with one end on the ground) casts a shadow of length $2$ m. What is the radius of the sphere in meters? (Assume the sun's rays are parallel and the meter stick is a line segment.)
$ \textbf{(A)}\ \frac{5}{2}\qquad\textbf{(B)}\ 9 - 4\sqrt{5}\qquad\textbf{(C)}\ 8\sqrt{10} - 23\qquad\textbf{(D)}\ 6 - \sqrt{15}\qquad\textbf{(E)}\ 10\sqrt{5} - 20 $
2008 Iran MO (2nd Round), 2
Let $I_a$ be the $A$-excenter of $\Delta ABC$ and the $A$-excircle of $\Delta ABC$ be tangent to the lines $AB,AC$ at $B',C'$, respectively. $ I_aB,I_aC$ meet $B'C'$ at $P,Q$, respectively. $M$ is the meet point of $BQ,CP$. Prove that the length of the perpendicular from $M$ to $BC$ is equal to $r$ where $r$ is the radius of incircle of $\Delta ABC$.
1976 AMC 12/AHSME, 18
[asy]
//size(100);//local
size(200);
real r1=2;
pair
O=(0,0),
D=(.5,.5*sqrt(3)),
C=(D.x+.5*3,D.y),
B,
B_prime=endpoint(arc(D, 3, 0,-2));
B=B_prime;
path
c1=circle(O, r1);
pair C=midpoint(D--B_prime);
path arc2=arc(B_prime, 6/2, 158.25,250);
draw(c1);
draw(O--D);
draw(D--C);
draw(C--B_prime);
pair A=beginpoint(arc2);
draw(B_prime--A);
//dot(O^^D^^C^^A);
//dot(B_prime);
label("\scriptsize{$O$}",O,.6dir(D--O));
label("\scriptsize{$C$}",C,.5dir(-55));
label("\scriptsize{$D$}", D,.2NW);
//label("\scriptsize{$B$}",B,S);
label("\scriptsize{$B$}", B_prime, .5*dir(D--B_prime));
label("\scriptsize{$A$}",A,.5dir(NE));
label("\tiny{2}", O--D, .45*LeftSide);
label("\tiny{3}", D--C, .45*LeftSide);
label("\tiny{6}", B_prime--A, .45*RightSide);
label("\tiny{3}", waypoint(C--B_prime,.1), .45*N);
//Credit to Klaus-Anton for the diagram[/asy]
In the adjoining figure, $AB$ is tangent at $A$ to the circle with center $O$; point $D$ is interior to the circle; and $DB$ intersects the circle at $C$. If $BC=DC=3$, $OD=2$, and $AB=6$, then the radius of the circle is
$\textbf{(A) }3+\sqrt{3}\qquad\textbf{(B) }15/\pi\qquad\textbf{(C) }9/2\qquad\textbf{(D) }2\sqrt{6}\qquad \textbf{(E) }\sqrt{22}$
1990 AMC 12/AHSME, 20
$ABCD$ is a quadrilateral with right angles at $A$ and $C$. Points $E$ and $F$ are on $AC$, and $DE$ and $BF$ are perpendicular to $AC$. If $AE=3$, $DE=5$, and $CE=7$, then $BF=$
[asy]
draw((0,0)--(10,0)--(3,-5)--(0,0)--(6.5,3)--(10,0));
draw((6.5,0)--(6.5,3));
draw((3,0)--(3,-5));
dot((0,0));
dot((10,0));
dot((3,0));
dot((3,-5));
dot((6.5,0));
dot((6.5,3));
label("A", (0,0), W);
label("B", (6.5,3), N);
label("C", (10,0), E);
label("D", (3,-5), S);
label("E", (3,0), N);
label("F", (6.5,0), S);[/asy]
$\text{(A)} \ 3.6 \qquad \text{(B)} \ 4 \qquad \text{(C)} \ 4.2 \qquad \text{(D)} \ 4.5 \qquad \text{(E)} \ 5$
2005 QEDMO 1st, 9 (G3)
Let $ABC$ be a triangle with $AB\neq CB$. Let $C^{\prime}$ be a point on the ray $[AB$ such that $AC^{\prime}=CB$. Let $A^{\prime}$ be a point on the ray $[CB$ such that $CA^{\prime}=AB$. Let the circumcircles of triangles $ABA^{\prime}$ and $CBC^{\prime}$ intersect at a point $Q$ (apart from $B$). Prove that the line $BQ$ bisects the segment $CA$.
Darij
2007 Bundeswettbewerb Mathematik, 3
In triangle $ ABC$ points $ E$ and $ F$ lie on sides $ AC$ and $ BC$ such that segments $ AE$ and $ BF$ have equal length, and circles formed by $ A,C,F$ and by $ B,C,E,$ respectively, intersect at point $ C$ and another point $ D.$ Prove that that the line $ CD$ bisects $ \angle ACB.$
2005 Silk Road, 3
Assume $A,B,C$ are three collinear points that $B \in [AC]$. Suppose $AA'$ and $BB'$
are to parrallel lines that $A'$, $B'$ and $C$ are not collinear. Suppose $O_1$ is circumcenter of circle passing through $A$, $A'$ and $C$. Also $O_2$ is circumcenter of circle passing through $B$, $B'$ and $C$. If area of $A'CB'$ is equal to area of $O_1CO_2$, then find all possible values for $\angle CAA'$
2007 CHKMO, 3
A convex quadrilateral $ABCD$ with $AC \neq BD$ is inscribed in a circle with center $O$. Let $E$ be the intersection of diagonals $AC$ and $BD$. If $P$ is a point inside $ABCD$ such that $\angle PAB+\angle PCB=\angle PBC+\angle PDC=90^\circ$, prove that $O$, $P$ and $E$ are collinear.
2006 Bulgaria Team Selection Test, 1
[b]Problem 1.[/b] Points $D$ and $E$ are chosen on the sides $AB$ and $AC$, respectively, of a triangle $\triangle ABC$ such that $DE\parallel BC$. The circumcircle $k$ of triangle $\triangle ADE$ intersects the lines $BE$ and $CD$ at the points $M$ and $N$ (different from $E$ and $D$). The lines $AM$ and $AN$ intersect the side $BC$ at points $P$ and $Q$ such that $BC=2\cdot PQ$ and the point $P$ lies between $B$ and $Q$. Prove that the circle $k$ passes through the point of intersection of the side $BC$ and the angle bisector of $\angle BAC$.
[i]Nikolai Nikolov[/i]
2006 Bulgaria Team Selection Test, 1
[b]Problem 1.[/b] Points $D$ and $E$ are chosen on the sides $AB$ and $AC$, respectively, of a triangle $\triangle ABC$ such that $DE\parallel BC$. The circumcircle $k$ of triangle $\triangle ADE$ intersects the lines $BE$ and $CD$ at the points $M$ and $N$ (different from $E$ and $D$). The lines $AM$ and $AN$ intersect the side $BC$ at points $P$ and $Q$ such that $BC=2\cdot PQ$ and the point $P$ lies between $B$ and $Q$. Prove that the circle $k$ passes through the point of intersection of the side $BC$ and the angle bisector of $\angle BAC$.
[i]Nikolai Nikolov[/i]
2021 Iran RMM TST, 2
Let $ABC$ be a triangle with $AB \neq AC$ and with incenter $I$. Let $M$ be the midpoint of $BC$, and let $L$ be the midpoint of the circular arc $BAC$. Lines through $M$ parallel to $BI,CI$ meet $AB,AC$ at $E$ and $F$, respectively, and meet $LB$ and $LC$ at $P$ and $Q$, respectively. Show that $I$ lies on the radical axis of the circumcircles of triangles $EMF$ and $PMQ$.
Proposed by [i]Andrew Wu[/i]
2022 Taiwan TST Round 1, 1
In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$
2024 Brazil Cono Sur TST, 2
Inside an angle $\angle BOC$ there are three disjoint circles: $k_1,k_2$ and $k_3$, which are, each one, tangent to its sides $BO$ and $OC$. Let $r_1, r_2$ and $r_3$, respectively, be the radii of these circles, with $r_1<r_2<r_3$. The circles $k_1$ and $k_3$ are tangent to the side $OB$ at $A$ and $B$, respectively, and $k_2$ is tangent to the side $OC$ at $C$. Let $K=AC\cap k_1,L=AC\cap k_2,M=BC\cap k_2$ and $N=BC\cap k_3$. Besides that, let $P=AM\cap BK,Q=AM\cap BL,R=AN\cap BK$ and $S=AN\cap BL$. If the intersections of $CP,CQ,CR$ and $CS$ with $AB$ are $X,Y,Z$ and $T$, respectively, prove that $XZ = YT$.
2010 Contests, 1
Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.
2006 Switzerland Team Selection Test, 2
Let $D$ be inside $\triangle ABC$ and $E$ on $AD$ different to $D$. Let $\omega_1$ and $\omega_2$ be the circumscribed circles of $\triangle BDE$ and $\triangle CDE$ respectively. $\omega_1$ and $\omega_2$ intersect $BC$ in the interior points $F$ and $G$ respectively. Let $X$ be the intersection between $DG$ and $AB$ and $Y$ the intersection between $DF$ and $AC$. Show that $XY$ is $\|$ to $BC$.
2014 Romania Team Selection Test, 1
Let $ABC$ be a triangle, let ${A}'$, ${B}'$, ${C}'$ be the orthogonal projections of the vertices $A$ ,$B$ ,$C$ on the lines $BC$, $CA$ and $AB$, respectively, and let $X$ be a point on the line $A{A}'$.Let $\gamma_{B}$ be the circle through $B$ and $X$, centred on the line $BC$, and let $\gamma_{C}$ be the circle through $C$ and $X$, centred on the line $BC$.The circle $\gamma_{B}$ meets the lines $AB$ and $B{B}'$ again at $M$ and ${M}'$, respectively, and the circle $\gamma_{C}$ meets the lines $AC$ and $C{C}'$ again at $N$ and ${N}'$, respectively.Show that the points $M$, ${M}'$, $N$ and ${N}'$ are collinear.
2008 Finnish National High School Mathematics Competition, 2
The incentre of the triangle $ABC$ is $I.$ The lines $AI, BI$ and $CI$ meet the circumcircle of the triangle $ABC$ also at points $D, E$ and $F,$ respectively.
Prove that $AD$ and $EF$ are perpendicular.
Oliforum Contest IV 2013, 2
Given an acute angled triangle $ABC$ with $M$ being the mid-point of $AB$ and $P$ and $Q$ are the feet of heights from $A$ to $BC$ and $B$ to $AC$ respectively. Show that if the line $AC$ is tangent to the circumcircle of $BMP$ then the line $BC$ is tangent to the circumcircle of $AMQ$.
2008 Mongolia Team Selection Test, 3
Let $ \Omega$ is circle with radius $ R$ and center $ O$. Let $ \omega$ is a circle inside of the $ \Omega$ with center $ I$ radius $ r$. $ X$ is variable point of $ \omega$ and tangent line of $ \omega$ pass through $ X$ intersect the circle $ \Omega$ at points $ A,B$. A line pass through $ X$ perpendicular with $ AI$ intersect $ \omega$ at $ Y$ distinct with $ X$.Let point $ C$ is symmetric to the point $ I$ with respect to the line $ XY$.Find the locus of circumcenter of triangle $ ABC$ when $ X$ varies on $ \omega$
2010 China Team Selection Test, 1
Let $\omega$ be a semicircle and $AB$ its diameter. $\omega_1$ and $\omega_2$ are two different circles, both tangent to $\omega$ and to $AB$, and $\omega_1$ is also tangent to $\omega_2$. Let $P,Q$ be the tangent points of $\omega_1$ and $\omega_2$ to $AB$ respectively, and $P$ is between $A$ and $Q$. Let $C$ be the tangent point of $\omega_1$ and $\omega$. Find $\tan\angle ACQ$.
2001 Vietnam National Olympiad, 1
A circle center $O$ meets a circle center $O'$ at $A$ and $B.$ The line $TT'$ touches the first circle at $T$ and the second at $T'$. The perpendiculars from $T$ and $T'$ meet the line $OO'$ at $S$ and $S'$. The ray $AS$ meets the first circle again at $R$, and the ray $AS'$ meets the second circle again at $R'$. Show that $R, B$ and $R'$ are collinear.
2000 Iran MO (3rd Round), 2
Isosceles triangles $A_3A_1O_2$ and $A_1A_2O_3$ are constructed on the sides of
a triangle $A_1A_2A_3$ as the bases, outside the triangle. Let $O_1$ be a point
outside $\Delta A_1A_2A_3$ such that
$\angle O_1A_3A_2 =\frac 12\angle A_1O_3A_2$ and $\angle O_1A_2A_3 =\frac 12\angle A_1O_2A_3$.
Prove that $A_1O_1\perp O_2O_3$, and if $T$ is the projection of $O_1$ onto $A_2A_3$,
then $\frac{A_1O_1}{O_2O_3} = 2\frac{O_1T}{A_2A_3}$.
2019 AIME Problems, 13
Triangle $ABC$ has side lengths $AB=4$, $BC=5$, and $CA=6$. Points $D$ and $E$ are on ray $AB$ with $AB<AD<AE$. The point $F \neq C$ is a point of intersection of the circumcircles of $\triangle ACD$ and $\triangle EBC$ satisfying $DF=2$ and $EF=7$. Then $BE$ can be expressed as $\tfrac{a+b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers such that $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.
2014 Kurschak Competition, 2
We are given an acute triangle $ABC$, and inside it a point $P$, which is not on any of the heights $AA_1$, $BB_1$, $CC_1$. The rays $AP$, $BP$, $CP$ intersect the circumcircle of $ABC$ at points $A_2$, $B_2$, $C_2$. Prove that the circles $AA_1A_2$, $BB_1B_2$ and $CC_1C_2$ are concurrent.