Found problems: 1111
2007 ITest, -1
The Ultimate Question is a 10-part problem in which each question after the first depends on the answer to the previous problem. As in the Short Answer section, the answer to each (of the 10) problems is a nonnegative integer. You should submit an answer for each of the 10 problems you solve (unlike in previous years). In order to receive credit for the correct answer to a problem, you must also correctly answer $\textit{every one}$ $\textit{of the previous parts}$ $\textit{of the Ultimate Question}$.
2014 Purple Comet Problems, 14
Steve needed to address a letter to $2743$ Becker Road. He remembered the digits of the address, but he forgot the correct order of the digits, so he wrote them down in random order. The probability that Steve got exactly two of the four digits in their correct positions is $\tfrac m n$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
1986 AMC 12/AHSME, 22
Six distinct integers are picked at random from $\{1,2,3,\ldots,10\}$. What is the probability that, among those selected, the second smallest is $3$?
$ \textbf{(A)}\ \frac{1}{60}\qquad\textbf{(B)}\ \frac{1}{6}\qquad\textbf{(C)}\ \frac{1}{3}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ \text{none of these} $
2006 Stanford Mathematics Tournament, 4
Rice University and Stanford University write questions and corresponding solutions for a high school math tournament. The Rice group writes 10 questions every hour but make a mistake in calculating their solutions 10% of the time. The Stanford group writes 20 problems every hour and makes solution mistakes 20% of the time. Each school works for 10 hours and then sends all problems to Smartie to be checked. However, Smartie isn’t really so smart, and only 75% of the problems she thinks are wrong are actually incorrect. Smartie thinks 20% of questions from Rice have incorrect solutions, and that 10% of questions from Stanford have incorrect solutions. This problem was definitely written and solved correctly. What is the probability that Smartie thinks its solution is wrong?
1960 Putnam, A6
A player repeatedly throwing a die is to play until their score reaches or passes a total $n$. Denote by $p(n)$ the probability of making exactly the total $n,$ and find the value of $\lim_{n \to \infty} p(n).$
2010 AMC 12/AHSME, 15
A coin is altered so that the probability that it lands on heads is less than $ \frac {1}{2}$ and when the coin is flipped four times, the probability of an equal number of heads and tails is $ \frac {1}{6}$. What is the probability that the coin lands on heads?
$ \textbf{(A)}\ \frac {\sqrt {15} \minus{} 3}{6}\qquad
\textbf{(B)}\ \frac {6 \minus{} \sqrt {6\sqrt {6} \plus{} 2}}{12}\qquad
\textbf{(C)}\ \frac {\sqrt {2} \minus{} 1}{2}\qquad
\textbf{(D)}\ \frac {3 \minus{} \sqrt {3}}{6}\qquad
\textbf{(E)}\ \frac {\sqrt {3} \minus{} 1}{2}$
2018 PUMaC Combinatorics B, 6
If $a$ and $b$ are selected uniformly from $\{0,1,\ldots,511\}$ without replacement, the expected number of $1$'s in the binary representation of $a+b$ can be written in simplest from as $\tfrac{m}{n}$. Compute $m+n$.
1987 IMO Shortlist, 16
Let $p_n(k)$ be the number of permutations of the set $\{1,2,3,\ldots,n\}$ which have exactly $k$ fixed points. Prove that $\sum_{k=0}^nk p_n(k)=n!$.[i](IMO Problem 1)[/i]
[b][i]Original formulation [/i][/b]
Let $S$ be a set of $n$ elements. We denote the number of all permutations of $S$ that have exactly $k$ fixed points by $p_n(k).$ Prove:
(a) $\sum_{k=0}^{n} kp_n(k)=n! \ ;$
(b) $\sum_{k=0}^{n} (k-1)^2 p_n(k) =n! $
[i]Proposed by Germany, FR[/i]
1981 Miklós Schweitzer, 10
Let $ P$ be a probability distribution defined on the Borel sets of the real line. Suppose that $ P$ is symmetric with respect to the origin, absolutely continuous with respect to the Lebesgue measure, and its density function $ p$ is zero outside the interval $ [\minus{}1,1]$ and inside this interval it is between the positive numbers $ c$ and $ d$ ($ c < d$). Prove that there is no distribution whose convolution square equals $ P$.
[i]T. F. Mori, G. J. Szekely[/i]
2016 Harvard-MIT Mathematics Tournament, 1
DeAndre Jordan shoots free throws that are worth $1$ point each. He makes $40\%$ of his shots. If he takes two shots find the probability that he scores at least $1$ point.
1993 AIME Problems, 7
Three numbers, $a_1$, $a_2$, $a_3$, are drawn randomly and without replacement from the set $\{1, 2, 3, \dots, 1000\}$. Three other numbers, $b_1$, $b_2$, $b_3$, are then drawn randomly and without replacement from the remaining set of 997 numbers. Let $p$ be the probability that, after a suitable rotation, a brick of dimensions $a_1 \times a_2 \times a_3$ can be enclosed in a box of dimensions $b_1 \times b_2 \times b_3$, with the sides of the brick parallel to the sides of the box. If $p$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?
2009 HMNT, 8
Let $ \triangle ABC $ be an equilateral triangle with height $13$, and let $O$ be its center. Point $X$ is chosen at random from all points inside $ \triangle ABC $. Given that the circle of radius $1$ centered at $X$ lies entirely inside $ \triangle ABC $, what is the probability that this circle contains $O$?
2004 Harvard-MIT Mathematics Tournament, 10
In a game similar to three card monte, the dealer places three cards on the table: the queen of spades and two red cards. The cards are placed in a row, and the queen starts in the center; the card configuration is thus RQR. The dealer proceeds to move. With each move, the dealer randomly switches the center card with one of the two edge cards (so the configuration after the first move is either RRQ or QRR). What is the probability that, after 2004 moves, the center card is the queen?
2015 CCA Math Bonanza, I3
Mark's teacher is randomly pairing his class of $16$ students into groups of $2$ for a project. What is the probability that Mark is paired up with his best friend, Mike? (There is only one Mike in the class)
[i]2015 CCA Math Bonanza Individual Round #3[/i]
2012 Purple Comet Problems, 21
Each time you click a toggle switch, the switch either turns from [i]off[/i] to [i]on[/i] or from [i]on[/i] to [i]off[/i]. Suppose that you start with three toggle switches with one of them [i]on[/i] and two of them [i]off[/i]. On each move you randomly select one of the three switches and click it. Let $m$ and $n$ be relatively prime positive integers so that $\frac{m}{n}$ is the probability that after four such clicks, one switch will be [i]on[/i] and two of them will be [i]off[/i]. Find $m+n$.
2019 Romanian Master of Mathematics, 3
Given any positive real number $\varepsilon$, prove that, for all but finitely many positive integers $v$, any graph on $v$ vertices with at least $(1+\varepsilon)v$ edges has two distinct simple cycles of equal lengths.
(Recall that the notion of a simple cycle does not allow repetition of vertices in a cycle.)
[i]Fedor Petrov, Russia[/i]
2015 AIME Problems, 5
Two unit squares are selected at random without replacement from an $n\times n$ grid of unit squares. Find the least positive integer $n$ such that the probability that the two selected squares are horizontally or vertically adjacent is less than $\frac{1}{2015}$.
1997 All-Russian Olympiad, 2
The Judgment of the Council of Sages proceeds as follows: the king arranges the sages in a line and places either a white hat, black hat or a red hat on each sage's head. Each sage can see the color of the hats of the sages in front of him, but not of his own hat or of the hats of the sages behind him. Then one by one (in an order of their choosing), each sage guesses a color. Afterward, the king executes those sages who did not correctly guess the color of their own hat. The day before, the Council meets and decides to minimize the number of executions. What is the smallest number of sages guaranteed to survive in this case?
[i]K. Knop[/i]
P.S. Of course, the sages hear the previous guesses.
See also [url]http://www.artofproblemsolving.com/Forum/viewtopic.php?f=42&t=530552[/url]
2019 AIME Problems, 5
A moving particle starts at the point $\left(4,4\right)$ and moves until it hits one of the coordinate axes for the first time. When the particle is at the point $\left(a,b\right)$, it moves at random to one of the points $\left(a-1,b\right)$, $\left(a,b-1\right)$, or $\left(a-1,b-1\right)$, each with probability $\tfrac{1}{3}$, independently of its previous moves. The probability that it will hit the coordinate axes at $\left(0,0\right)$ is $\tfrac{m}{3^n}$, where $m$ and $n$ are positive integers, and $m$ is not divisible by $3$. Find $m+n$.
2016 NIMO Problems, 4
Justine has two fair dice, one with sides labeled $1,2,\ldots, m$ and one with sides labeled $1,2,\ldots, n.$ She rolls both dice once. If $\tfrac{3}{20}$ is the probability that at least one of the numbers showing is at most 3, find the sum of all distinct possible values of $m+n$.
[i]Proposed by Justin Stevens[/i]
1986 IMO Shortlist, 10
Three persons $A,B,C$, are playing the following game:
A $k$-element subset of the set $\{1, . . . , 1986\}$ is randomly chosen, with an equal probability of each choice, where $k$ is a fixed positive integer less than or equal to $1986$. The winner is $A,B$ or $C$, respectively, if the sum of the chosen numbers leaves a remainder of $0, 1$, or $2$ when divided by $3$.
For what values of $k$ is this game a fair one? (A game is fair if the three outcomes are equally probable.)
1999 AIME Problems, 13
Forty teams play a tournament in which every team plays every other team exactly once. No ties occur, and each team has a $50 \%$ chance of winning any game it plays. The probability that no two teams win the same number of games is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $\log_2 n.$
2009 Canadian Mathematical Olympiad Qualification Repechage, 4
Three fair six-sided dice are thrown. Determine the probability that the sum of the numbers on the three top faces is $6$.
1983 USAMO, 1
On a given circle, six points $A$, $B$, $C$, $D$, $E$, and $F$ are chosen at random, independently and uniformly with respect to arc length. Determine the probability that the two triangles $ABC$ and $DEF$ are disjoint, i.e., have no common points.
2003 AMC 12-AHSME, 8
What is the probability that a randomly drawn positive factor of $ 60$ is less than $ 7$?
$ \textbf{(A)}\ \frac{1}{10} \qquad
\textbf{(B)}\ \frac{1}{6} \qquad
\textbf{(C)}\ \frac{1}{4} \qquad
\textbf{(D)}\ \frac{1}{3} \qquad
\textbf{(E)}\ \frac{1}{2}$