Found problems: 1111
2019 AMC 10, 21
Debra flips a fair coin repeatedly, keeping track of how many heads and how many tails she has seen in total, until she gets either two heads in a row or two tails in a row, at which point she stops flipping. What is the probability that she gets two heads in a row but she sees a second tail before she sees a second head?
$\textbf{(A) } \frac{1}{36} \qquad \textbf{(B) } \frac{1}{24} \qquad \textbf{(C) } \frac{1}{18} \qquad \textbf{(D) } \frac{1}{12} \qquad \textbf{(E) } \frac{1}{6}$
KoMaL A Problems 2019/2020, A. 772
Each of $N$ people chooses a random integer number between $1$ and $19$ (including $1$ and $19$, and not necessarily with the same distribution). The random numbers chosen by the people are independent from each other, and it is true that each person chooses each of the $19$ numbers with probability at most $99\%$. They add up the $N$ chosen numbers, and take the remainder of the sum divided by $19$. Prove that the distribution of the result tends to the uniform distribution exponentially, i.e. there exists a number $0<c<1$ such that the mod $19$ remainder of the sum of the $N$ chosen numbers equals each of the mod $19$ remainders with probability between $\frac{1}{19}-c^{N}$ and $\frac{1}{19}+c^{N}$.
2014 JHMMC 7 Contest, 21
Kelvin the Frog and Alex the Kat play a game. Kelvin the Frog goes first, and they alternate rolling a standard $6\text{-sided die.} If they roll an even number or a number that was previously rolled, they win. What is the probability that Alex
wins?
2011 Pre-Preparation Course Examination, 2
prove that for almost every real number $\alpha \in [0,1]$ there exists natural number $n_{\alpha} \in \mathbb N$ such that the inequality
$|\alpha-\frac{p}{q}|\le \frac{1}{q^n}$
for natural $n\ge n_{\alpha}$ and rational $\frac{p}{q}$ has no answers.
2011 National Olympiad First Round, 24
There is a bag with balls whose colors are $c_1, c_2, \dots, c_n$. Let $a_i$ be the number of balls inside the bag with color $c_i$. We are drawing $n$ balls from the bag one by one with replacement. If $p(a_1,a_2,\dots, a_n)$ denotes the probability that at least two of them have same color, which one below is smaller?
$\textbf{(A)}\ p(2,2,2,1) \qquad\textbf{(B)}\ p(1,1,1,1) \qquad\textbf{(C)}\ p(2,2,3) \qquad\textbf{(D)}\ p(2,2,1) \qquad\textbf{(E)}\ p(1,1,1)$
1989 ITAMO, 5
A fair coin is repeatedly tossed. We receive one marker for every ”head” and two markers for every ”tail”. We win the game if, at some moment, we possess exactly $100$ markers. Is the probability of winning the game greater than, equal to, or less than $2/3$?
2014 Mexico National Olympiad, 6
Let $d(n)$ be the number of positive divisors of a positive integer $n$ (including $1$ and $n$). Find all values of $n$ such that $n + d(n) = d(n)^2$.
2013 Putnam, 5
Let $X=\{1,2,\dots,n\},$ and let $k\in X.$ Show that there are exactly $k\cdot n^{n-1}$ functions $f:X\to X$ such that for every $x\in X$ there is a $j\ge 0$ such that $f^{(j)}(x)\le k.$
[Here $f^{(j)}$ denotes the $j$th iterate of $f,$ so that $f^{(0)}(x)=x$ and $f^{(j+1)}(x)=f\left(f^{(j)}(x)\right).$]
2009 Today's Calculation Of Integral, 422
There are 10 cards, labeled from 1 to 10. Three cards denoted by $ a,\ b,\ c\ (a > b > c)$ are drawn from the cards at the same time.
Find the probability such that $ \int_0^a (x^2 \minus{} 2bx \plus{} 3c)\ dx \equal{} 0$.
1993 Denmark MO - Mohr Contest, 5
In a cardboard box are a large number of loose socks. Some of the socks are red, the others are blue. It is stated that the total number of socks does not exceed $1993$. Furthermore, it is stated that the probability of pulling two socks from the same color when two socks are randomly drawn from the box is $1/2$. What is according to the available information, the largest number of red socks that can exist in the box?
2006 AMC 10, 20
Six distinct positive integers are randomly chosen between 1 and 2006, inclusive. What is the probability that some pair of these integers has a difference that is a multiple of 5?
$ \textbf{(A) } \frac 12 \qquad \textbf{(B) } \frac 35 \qquad \textbf{(C) } \frac 23 \qquad \textbf{(D) } \frac 45 \qquad \textbf{(E) } 1$
2013 Harvard-MIT Mathematics Tournament, 15
Tim and Allen are playing a match of [i]tenus[/i]. In a match of [i]tenus[/i], the two players play a series of games, each of which is won by one of the two players. The match ends when one player has won exactly two more games than the other player, at which point the player who has won more games wins the match. In odd-numbered games, Tim wins with probability $3/4$, and in the even-numbered games, Allen wins with probability $3/4$. What is the expected number of games in a match?
2006 AMC 10, 21
For a particular peculiar pair of dice, the probabilities of rolling 1, 2, 3, 4, 5 and 6 on each die are in the ratio $ 1: 2: 3: 4: 5: 6$. What is the probability of rolling a total of 7 on the two dice?
$ \textbf{(A) } \frac 4{63} \qquad \textbf{(B) } \frac 18 \qquad \textbf{(C) } \frac 8{63} \qquad \textbf{(D) } \frac 16 \qquad \textbf{(E) } \frac 27$
2005 Iran MO (3rd Round), 4
a) Year 1872 Texas
3 gold miners found a peice of gold. They have a coin that with possibility of $\frac 12$ it will come each side, and they want to give the piece of gold to one of themselves depending on how the coin will come. Design a fair method (It means that each of the 3 miners will win the piece of gold with possibility of $\frac 13$) for the miners.
b) Year 2005, faculty of Mathematics, Sharif university of Technolgy
Suppose $0<\alpha<1$ and we want to find a way for people name $A$ and $B$ that the possibity of winning of $A$ is $\alpha$. Is it possible to find this way?
c) Year 2005 Ahvaz, Takhti Stadium
Two soccer teams have a contest. And we want to choose each player's side with the coin, But we don't know that our coin is fair or not. Find a way to find that coin is fair or not?
d) Year 2005,summer
In the National mathematical Oympiad in Iran. Each student has a coin and must find a way that the possibility of coin being TAIL is $\alpha$ or no. Find a way for the student.
1981 AMC 12/AHSME, 26
Alice, Bob, and Carol repeatedly take turns tossing a die. Alice begins; Bob always follows Alice; Carol always follows Bob; and Alice always follows Carol. Find the probability that Carol will be the first one to toss a six. (The probability of obtaining a six on any toss is $ \frac{1}{6}$, independent of the outcome of any other toss.)
$ \textbf{(A)}\ \frac{1}{3}\qquad
\textbf{(B)}\ \frac{2}{9}\qquad
\textbf{(C)}\ \frac{5}{18}\qquad
\textbf{(D)}\ \frac{25}{91}\qquad
\textbf{(E)}\ \frac{36}{91}$
2002 Indonesia MO, 2
Five dice are rolled. The product of the faces are then computed. Which result has a larger probability of occurring; $180$ or $144$?
1995 AMC 12/AHSME, 12
Hi guys,
I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this:
1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though.
2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary.
3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions:
A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh?
B. Do NOT go back to the previous problem(s). This causes too much confusion.
C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for.
4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving!
Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D
2007 AMC 8, 24
A bag contains four pieces of paper, each labeled with one of the digits $1$, $2$, $3$ or $4$, with no repeats. Three of these pieces are drawn, one at a time without replacement, to construct a three-digit number. What is the probability that the three-digit number is a multiple of $3$?
$\textbf{(A)}\ \frac{1}{4} \qquad
\textbf{(B)}\ \frac{1}{3} \qquad
\textbf{(C)}\ \frac{1}{2} \qquad
\textbf{(D)}\ \frac{2}{3} \qquad
\textbf{(E)}\ \frac{3}{4}$
2004 Harvard-MIT Mathematics Tournament, 5
A best-of-9 series is to be played between two teams; that is, the first team to win 5 games is the winner. The Mathletes have a chance of $\tfrac{2}{3}$ of winning any given game. What is the probability that exactly 7 games will need to be played to determine a winner?
2003 AMC 10, 8
What is the probability that a randomly drawn positive factor of $ 60$ is less than $ 7$?
$ \textbf{(A)}\ \frac{1}{10} \qquad
\textbf{(B)}\ \frac{1}{6} \qquad
\textbf{(C)}\ \frac{1}{4} \qquad
\textbf{(D)}\ \frac{1}{3} \qquad
\textbf{(E)}\ \frac{1}{2}$
2013 Stanford Mathematics Tournament, 3
Suppose two equally strong tennis players play against each other until one player wins three games in a row. The results of each game are independent, and each player will win with probability $\frac{1}{2}$. What is the expected value of the number of games they will play?
2011 IMC, 4
Let $A_1,A_2,\dots, A_n$ be finite, nonempty sets. Define the function
\[f(t)=\sum_{k=1}^n \sum_{1\leq i_1<i_2<\dots<i_k\leq n} (-1)^{k-1}t^{|A_{i_1}\cup A_{i_2}\cup \dots\cup A_{i_k}|}.\]
Prove that $f$ is nondecreasing on $[0,1].$
($|A|$ denotes the number of elements in $A.$)
1980 Canada National Olympiad, 4
A gambling student tosses a fair coin. She gains $1$ point for each head that turns up, and gains $2$ points for each tail that turns up. Prove that the probability of the student scoring [i]exactly[/i] $n$ points is $\frac{1}{3}\cdot\left(2+\left(-\frac{1}{2}\right)^{n}\right)$.
2019 BMT Spring, 1
A fair coin is repeatedly flipped until $2019$ consecutive coin flips are the same. Compute the probability that the first and last flips of the coin come up differently.
2005 AMC 12/AHSME, 25
Six ants simultaneously stand on the six vertices of a regular octahedron, with each ant at a different vertex. Simultaneously and independently, each ant moves from its vertex to one of the four adjacent vertices, each with equal probability. What is the probability that no two ants arrive at the same vertex?
$ \textbf{(A)}\ \frac {5}{256} \qquad
\textbf{(B)}\ \frac {21}{1024} \qquad
\textbf{(C)}\ \frac {11}{512} \qquad
\textbf{(D)}\ \frac {23}{1024} \qquad
\textbf{(E)}\ \frac {3}{128}$