Found problems: 1111
Kvant 2021, M2673
There are $n{}$ passengers in the queue to board a $n{}$-seat plane. The first one in the queue is an absent-minded old lady who, after boarding the plane, sits down at a randomly selected place. Each subsequent passenger sits in his seat if it is free, and in a random seat otherwise. How many passengers will be out of their seats on average?
[i]Proposed by A. Zaslavsky[/i]
2007 Princeton University Math Competition, 10
Bob, having little else to do, rolls a fair $6$-sided die until the sum of his rolls is greater than or equal to $700$. What is the expected number of rolls needed? Any answer within $.0001$ of the correct answer will be accepted.
2015 AMC 10, 25
Let $S$ be a square of side length $1$. Two points are chosen independently at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\tfrac12$ is $\tfrac{a-b\pi}c$, where $a$, $b$, and $c$ are positive integers and $\gcd(a,b,c)=1$. What is $a+b+c$?
$\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$
2019 AMC 10, 20
The numbers $1,2,\dots,9$ are randomly placed into the $9$ squares of a $3 \times 3$ grid. Each square gets one number, and each of the numbers is used once. What is the probability that the sum of the numbers in each row and each column is odd?
$\textbf{(A) }1/21\qquad\textbf{(B) }1/14\qquad\textbf{(C) }5/63\qquad\textbf{(D) }2/21\qquad\textbf{(E) } 1/7$
1993 Greece National Olympiad, 7
Three numbers, $a_1$, $a_2$, $a_3$, are drawn randomly and without replacement from the set $\{1, 2, 3, \dots, 1000\}$. Three other numbers, $b_1$, $b_2$, $b_3$, are then drawn randomly and without replacement from the remaining set of 997 numbers. Let $p$ be the probability that, after a suitable rotation, a brick of dimensions $a_1 \times a_2 \times a_3$ can be enclosed in a box of dimensions $b_1 \times b_2 \times b_3$, with the sides of the brick parallel to the sides of the box. If $p$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?
1991 Arnold's Trivium, 96
Each of $3600$ subscribers of a telephone exchange calls it once an hour on average. What is the probability that in a given second $5$ or more calls are received? Estimate the mean interval of time between such seconds $(i, i + 1)$.
2008 ITest, 21
One of the boxes that Joshua and Wendy unpack has Joshua's collection of board games. Michael, Wendy, Alexis, and Joshua decide to play one of them, a game called $\textit{Risk}$ that involves rolling ordinary six-sided dice to determine the outcomes of strategic battles. Wendy has never played before, so early on Michael explains a bit of strategy.
"You have the first move and you occupy three of the four territories in the Australian continent. You'll want to attack Joshua in Indonesia so that you can claim the Australian continent which will give you bonus armies on your next turn."
"Don't tell her $\textit{that!}$" complains Joshua.
Wendy and Joshua begin rolling dice to determine the outcome of their struggle over Indonesia. Joshua rolls extremely well, overcoming longshot odds to hold off Wendy's attack. Finally, Wendy is left with one chance. Wendy and Joshua each roll just one six-sided die. Wendy wins if her roll is $\textit{higher}$ than Joshua's roll. Let $a$ and $b$ be relatively prime positive integers so that $a/b$ is the probability that Wendy rolls higher, giving her control over the continent of Australia. Find the value of $a+b$.
2012 Brazil National Olympiad, 1
In a culturing of bacteria, there are two species of them: red and blue bacteria.
When two red bacteria meet, they transform into one blue bacterium.
When two blue bacteria meet, they transform into four red bacteria.
When a red and a blue bacteria meet, they transform into three red bacteria.
Find, in function of the amount of blue bacteria and the red bacteria initially in the culturing,
all possible amounts of bacteria, and for every possible amount, the possible amounts of red and blue bacteria.
2007 Princeton University Math Competition, 1
Bob and Bill's history class has $32$ people in it, but only $30$ people are allowed per class. Two people will be randomly selected for transfer to a random one of two history classes. What is the probability that Bob and Bill are both transferred, and that they are placed in the same class? Write your answer as a fraction in lowest terms.
2020 Bangladesh Mathematical Olympiad National, Problem 1
Lazim rolls two $24$-sided dice. From the two rolls, Lazim selects the die with the highest number. $N$ is an integer not greater than $24$. What is the largest possible value for $N$ such that there is a more than $50$% chance that the die Lazim selects is larger than or equal to $N$?
2011 AMC 12/AHSME, 25
For every $m$ and $k$ integers with $k$ odd, denote by $[\frac{m}{k}]$ the integer closest to $\frac{m}{k}$. For every odd integer $k$, let $P\left(k\right)$ be the probability that \[ [\frac{n}{k}] + [\frac{100-n}{k}] = [\frac{100}{k}] \] for an integer $n$ randomly chosen from the interval $1 \le n \le 99!$. What is the minimum possible value of $P\left(k\right)$ over the odd integers $k$ in the interval $1 \le k \le 99$?
$ \textbf{(A)}\ \frac{1}{2} \qquad
\textbf{(B)}\ \frac{50}{99} \qquad
\textbf{(C)}\ \frac{44}{87} \qquad
\textbf{(D)}\ \frac{34}{67} \qquad
\textbf{(E)}\ \frac{7}{13} $
2013 ELMO Problems, 1
Let $a_1,a_2,...,a_9$ be nine real numbers, not necessarily distinct, with average $m$. Let $A$ denote the number of triples $1 \le i < j < k \le 9$ for which $a_i + a_j + a_k \ge 3m$. What is the minimum possible value of $A$?
[i]Proposed by Ray Li[/i]
2018 CMIMC Individual Finals, 2
John has a standard four-sided die. Each roll, he gains points equal to the value of the roll multiplied by the number of times he has now rolled that number; for example, if his first rolls were $3,3,2,3$, he would have $3+6+2+9=20$ points. Find the expected number of points John will have after rolling the die 25 times.
1989 Poland - Second Round, 2
For a randomly selected permutation $ \mathbf{f} = (f_1,..., f_n) $ of the set $ \{1,\ldots, n\} $ let us denote by $ X(\mathbf{f}) $ the largest number $ k \leq n $ such that $ f_i < f_{ i+1} $ for all numbers $ i < k $. Prove that the expected value of the random variable $ X $ is $ \sum_{k=1}^n \frac{1}{k!} $.
1992 Poland - First Round, 11
Given is a $n \times n$ chessboard. With the same probability, we put six pawns on its six cells. Let $p_n$ denotes the probability that there exists a row or a column containing at least two pawns. Find $\lim_{n \to \infty} np_n$.
2019 LIMIT Category C, Problem 11
Let $X_1,X_2,X_3$ be $\exp(1)$. Find the conditional distribution of $X_1|X_1+X_2+X_3=k$.
$\textbf{(A)}~\operatorname{Uniform}(0,k)$
$\textbf{(B)}~\operatorname{Uniform}\left(0,\frac k3\right)$
$\textbf{(C)}~\operatorname{Uniform}\left(0,\frac{2k}3\right)$
$\textbf{(D)}~\text{None of the above}$
2007 Stanford Mathematics Tournament, 3
Mary puts one red and one blue marble into a box. In another box she places two red marbles. She then forgets which box is which and randomly reaches into one of the boxes and takes out a red marble. What is the probability that the other marble in that box is blue?
1958 February Putnam, A3
Real numbers are chosen at random from the interval $[0,1].$ If after choosing the $n$-th number the sum of the numbers so chosen first exceeds $1$, show that the expected value for $n$ is $e$.
2010 CHMMC Fall, 1
Susan plays a game in which she rolls two fair standard six-sided dice with sides labeled one
through six. She wins if the number on one of the dice is three times the number on the other
die. If Susan plays this game three times, compute the probability that she wins at least once.
1986 ITAMO, 3
Two numbers are randomly selected from interval $I = [0, 1]$. Given $\alpha \in I$, what is the probability that the smaller of the two numbers does not exceed $\alpha$?
Is the answer $(100 \alpha)$%, it just seems too easy. :|
1998 Hungary-Israel Binational, 1
A player is playing the following game. In each turn he flips a coin and guesses the outcome. If his guess is correct, he gains $ 1$ point; otherwise he loses all his points. Initially the player has no points, and plays the game
until he has $ 2$ points.
(a) Find the probability $ p_{n}$ that the game ends after exactly $ n$ flips.
(b) What is the expected number of flips needed to finish the game?
2018 HMNT, 5
Lil Wayne, the rain god, determines the weather. If Lil Wayne makes it rain on any given day, the probability that he makes it rain the next day is $75\%$. If Lil Wayne doesn't make it rain on one day, the probability that he makes it rain the next day is $25\%$. He decides not to make it rain today. Find the smallest positive integer $n$ such that the probability that Lil Wayne [i]makes it rain[/i] $n$ days from today is greater than $49.9\%$.
2014 National Olympiad First Round, 4
What is the probability of having $2$ adjacent white balls or $2$ adjacent blue balls in a random arrangement of $3$ red, $2$ white and $2$ blue balls?
$
\textbf{(A)}\ \dfrac{2}{5}
\qquad\textbf{(B)}\ \dfrac{3}{7}
\qquad\textbf{(C)}\ \dfrac{16}{35}
\qquad\textbf{(D)}\ \dfrac{10}{21}
\qquad\textbf{(E)}\ \dfrac{5}{14}
$
2002 AMC 12/AHSME, 15
There are $1001$ red marbles and $1001$ black marbles in a box. Let $P_s$ be the probability that two marbles drawn at random from the box are the same color, and let $P_d$ be the probability that they are different colors. Find $|P_s-P_d|$.
$\textbf{(A) }0\qquad\textbf{(B) }\dfrac1{2002}\qquad\textbf{(C) }\dfrac1{2001}\qquad\textbf{(D) }\dfrac2{2001}\qquad\textbf{(E) }\dfrac1{1000}$
2005 iTest, 3
[b]3A.[/b] Sudoku, the popular math game that caught on internationally before making its way here to the United States, is a game of logic based on a grid of $9$ rows and $9$ columns. This grid is subdivided into $9$ squares (“subgrids”) of length $3$. A successfully completed Sudoku puzzle fills this grid with the numbers $1$ through $9$ such that each number appears only once in each row, column, and individual $3 \times 3$ subgrid. Each Sudoku puzzle has one and only one correct solution.
Complete the following Sudoku puzzle, and find the sum of the numbers represented by $X, Y$, and $Z$ in the grid. [i](1 point)[/i]
$\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline
& & 2 & 9 & 7 & 4 & & & \\ \hline
& Z & & & & & & 5 & 7 \\ \hline
& & & & & & Y & & \\ \hline
& & 4 & & 5 & & & & 2 \\ \hline
& & 9 & X & 1 & & 6 & & \\ \hline
8 & & & & 3 & & 4 & & \\ \hline
& & & & & & & & \\ \hline
1 & 3 & & & & & & & \\ \hline
& & & 6 & 8 & 2 & 9 & & \\ \hline
\end{tabular}$
[b]3B.[/b] Let $A$ equal the correct answer from [b]3A[/b]. In triangle $WXY$, $tan \angle YWX= (A + 8) / .5A$, and the altitude from $W$ divides $XY$ into segments of $3$ and $A + 3$. What is the sum of the digits of the square of the area of the triangle? [i](2 points)[/i]
[b]3C.[/b] Let $B$ equal the correct answer from [b]3B[/b]. If a student team taking the $2005$ iTest solves $B$ problems correctly, and the probability that this student team makes over a $18$ is $x/y$ where $x$ and $y$ are relatively prime, find $x + y$.
Assume that each chain reaction question – all $3$ parts it contains – counts as a single problem. Also assume that the student team does not attempt any tiebreakers. [i](4 points)[/i]
[i][Note for problem 3C beacuse you might not know how points are given at that iTest:
Part A (aka Short Answer), has 40 problems of 1 point each, total 40
Part B (aka Chain Reaction), has 3 problems of 7,6,7 points each, total 20
Part C (aka Long Answer), has 5 problems of 8 point each, total 40
all 3 parts add to 100 points totally ([url=https://artofproblemsolving.com/community/c3176431_itest_2005]here [/url] is that test)][/i]
[hide=ANSWER KEY]3A.14
3B. 4
3C. 6563 [/hide]