Found problems: 1111
2015 Miklos Schweitzer, 11
For $[0,1]\subset E\subset [0,+\infty)$ where $E$ is composed of a finite number of closed interval,we start a two dimensional Brownian motion from the point $x<0$ terminating when we first hit $E$.Let $p(x)$ be the probability of the finishing point being in $[0,1]$.Prove that $p(x)$ is increasing on $[-1,0)$.
2015 AMC 12/AHSME, 23
Let $S$ be a square of side length $1$. Two points are chosen independently at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\tfrac12$ is $\tfrac{a-b\pi}c$, where $a$, $b$, and $c$ are positive integers and $\gcd(a,b,c)=1$. What is $a+b+c$?
$\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$
1989 AMC 8, 25
Every time these two wheels are spun, two numbers are selected by the pointers. What is the probability that the sum of the two selected numbers is even?
$\text{(A)}\ \frac{1}{6} \qquad \text{(B)}\ \frac{3}{7} \qquad \text{(C)}\ \frac{1}{2} \qquad \text{(D)}\ \frac{2}{3} \qquad \text{(E)}\ \frac{5}{7}$
[asy]
unitsize(36);
draw(circle((-3,0),1));
draw(circle((0,0),1));
draw((0,0)--dir(30)); draw((0,0)--(0,-1)); draw((0,0)--dir(150));
draw((-2.293,.707)--(-3.707,-.707)); draw((-2.293,-.707)--(-3.707,.707));
fill((-2.9,1)--(-2.65,1.25)--(-2.65,1.6)--(-3.35,1.6)--(-3.35,1.25)--(-3.1,1)--cycle,black);
fill((.1,1)--(.35,1.25)--(.35,1.6)--(-.35,1.6)--(-.35,1.25)--(-.1,1)--cycle,black);
label("$5$",(-3,.2),N); label("$3$",(-3.2,0),W); label("$4$",(-3,-.2),S); label("$8$",(-2.8,0),E);
label("$6$",(0,.2),N); label("$9$",(-.2,.1),SW); label("$7$",(.2,.1),SE);
[/asy]
STEMS 2023 Math Cat A, 6
There are $5$ vertices labelled $1,2,3,4,5$. For any two pairs of vertices $u, v$, the edge $uv$
is drawn with probability $1/2$. If the probability that the resulting graph is a tree is given by $\dfrac{p}{q}$ where $p, q$ are coprime, then find the value of $q^{1/10} + p$.
2013 AMC 12/AHSME, 16
$A$, $B$, $C$ are three piles of rocks. The mean weight of the rocks in $A$ is $40$ pounds, the mean weight of the rocks in $B$ is $50$ pounds, the mean weight of the rocks in the combined piles $A$ and $B$ is $43$ pounds, and the mean weight of the rocks in the combined piles $A$ and $C$ is $44$ pounds. What is the greatest possible integer value for the mean in pounds of the rocks in the combined piles $B$ and $C$?
$ \textbf{(A)} \ 55 \qquad \textbf{(B)} \ 56 \qquad \textbf{(C)} \ 57 \qquad \textbf{(D)} \ 58 \qquad \textbf{(E)} \ 59$
2006 Taiwan National Olympiad, 1
There are 94 safes and 94 keys. Each key can open only one safe, and each safe can be opened by only one key. We place randomly one key into each safe. 92 safes are then randomly chosen, and then locked. What is the probability that we can open all the safes with the two keys in the two remaining safes?
(Once a safe is opened, the key inside the safe can be used to open another safe.)
2024 IMC, 5
Let $n>d$ be positive integers. Choose $n$ independent, uniformly distributed random points $x_1,\dots,x_n$ in the unit ball $B \subset \mathbb{R}^d$ centered at the origin. For a point $p \in B$ denote by $f(p)$ the probability that the convex hull of $x_1,\dots,x_n$ contains $p$. Prove that if $p,q \in B$ and the distance of $p$ from the origin is smaller than the distance of $q$ from the origin, then $f(p) \ge f(q)$.
1971 Bundeswettbewerb Mathematik, 4
Inside a square with side lengths $1$ a broken line of length $>1000$ without selfintersection is drawn.
Show that there is a line parallel to a side of the square that intersects the broken line in at least $501$ points.
2009 AMC 12/AHSME, 17
Each face of a cube is given a single narrow stripe painted from the center of one edge to the center of its opposite edge. The choice of the edge pairing is made at random and independently for each face. What is the probability that there is a continuous stripe encircling the cube?
$ \textbf{(A)}\ \frac {1}{8}\qquad \textbf{(B)}\ \frac {3}{16}\qquad \textbf{(C)}\ \frac {1}{4} \qquad \textbf{(D)}\ \frac {3}{8}\qquad \textbf{(E)}\ \frac {1}{2}$
2016 AMC 12/AHSME, 23
Three numbers in the interval [0,1] are chosen independently and at random. What is the probability that the chosen numbers are the side lengths of a triangle with positive area?
$\textbf{(A) }\frac16\qquad\textbf{(B) }\frac13\qquad\textbf{(C) }\frac12\qquad\textbf{(D) }\frac23\qquad\textbf{(E) }\frac56$
2013 AMC 10, 24
Central High School is competing against Northern High School in a backgammon match. Each school has three players, and the contest rules require that each player play two games against each of the other's school's players. The match takes place in six rounds, with three games played simultaneously in each round. In how many different ways can the match be scheduled?
$\textbf{(A)} \ 540 \qquad \textbf{(B)} \ 600 \qquad \textbf{(C)} \ 720 \qquad \textbf{(D)} \ 810 \qquad \textbf{(E)} \ 900$
2014 IMO Shortlist, C5
A set of lines in the plane is in [i]general position[/i] if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its [i]finite regions[/i]. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ lines blue in such a way that none of its finite regions has a completely blue boundary.
[i]Note[/i]: Results with $\sqrt{n}$ replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant $c$.
2014 IMO, 6
A set of lines in the plane is in [i]general position[/i] if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its [i]finite regions[/i]. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ lines blue in such a way that none of its finite regions has a completely blue boundary.
[i]Note[/i]: Results with $\sqrt{n}$ replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant $c$.
2011 China Girls Math Olympiad, 4
A tennis tournament has $n>2$ players and any two players play one game against each other (ties are not allowed). After the game these players can be arranged in a circle, such that for any three players $A,B,C$, if $A,B$ are adjacent on the circle, then at least one of $A,B$ won against $C$. Find all possible values for $n$.
2014 Costa Rica - Final Round, 3
There are 2014 houses in a circle. Let $A$ be one of these houses. Santa Claus enters house $A$ and leaves a gift. Then with probability $1/2$ he visits $A$'s left neighbor and with probability $1/2$ he visits $A$'s right neighbor. He leaves a gift also in that second house, and then repeats the procedure (visits with probability $1/2$ either of the neighbors, leaves a gift, etc). Santa finishes as soon as every house has received at least one gift.
Prove that any house $B$ different from $A$ has a probability of $1/2013$ of being the last house receiving a gift.
2007 Princeton University Math Competition, 7
Tom is searching for the $6$ books he needs in a random pile of $30$ books. What is the expected number of books must he examine before finding all $6$ books he needs?
2010 AIME Problems, 13
The $ 52$ cards in a deck are numbered $ 1, 2, \ldots, 52$. Alex, Blair, Corey, and Dylan each picks a card from the deck without replacement and with each card being equally likely to be picked, The two persons with lower numbered cards from a team, and the two persons with higher numbered cards form another team. Let $ p(a)$ be the probability that Alex and Dylan are on the same team, given that Alex picks one of the cards $ a$ and $ a\plus{}9$, and Dylan picks the other of these two cards. The minimum value of $ p(a)$ for which $ p(a)\ge\frac12$ can be written as $ \frac{m}{n}$. where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.
1998 Korea - Final Round, 3
Let $F_n$ be the set of all bijective functions $f:\left\{1,2,\ldots,n\right\}\rightarrow\left\{1,2,\ldots,n\right\}$ that satisfy the conditions:
1. $f(k)\leq k+1$ for all $k\in\left\{1,2,\ldots,n\right\}$
2. $f(k)\neq k$ for all $k\in\left\{2,3,\ldots,n\right\}$
Find the probability that $f(1)\neq1$ for $f$ randomly chosen from $F_n$.
2016 Fall CHMMC, 11
Let $a,b \in [0,1], c \in [-1,1]$ be reals chosen independently and uniformly at random. What is the probability that $p(x) = ax^2+bx+c$ has a root in $[0,1]$?
2019 LIMIT Category C, Problem 8
Let $X_1,X_2,\ldots$ be a sequence of independent random variables distributed exponentially with mean $1$. Suppose $\mathbb N$ is a random variable independent of
$X_i$'s that has a Poisson distribution with mean $\lambda>0$. What is the expected value of $X_1+X_2+\ldots+X_N$?
$\textbf{(A)}~N^2$
$\textbf{(B)}~\lambda+\lambda^2$
$\textbf{(C)}~\lambda^2$
$\textbf{(D)}~\lambda$
2009 IMO Shortlist, 7
Let $ a_1, a_2, \ldots , a_n$ be distinct positive integers and let $ M$ be a set of $ n \minus{} 1$ positive integers not containing $ s \equal{} a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n.$ A grasshopper is to jump along the real axis, starting at the point $ 0$ and making $ n$ jumps to the right with lengths $ a_1, a_2, \ldots , a_n$ in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in $ M.$
[i]Proposed by Dmitry Khramtsov, Russia[/i]
2000 Finnish National High School Mathematics Competition, 5
Irja and Valtteri are tossing coins. They take turns, Irja starting. Each of them has a pebble which reside on opposite vertices of a square at the start. If a player gets heads, she or he moves her or his pebble on opposite vertex. Otherwise the player in turn moves her or his pebble to an adjacent vertex so that Irja proceeds in positive and Valtteri in negative direction. The winner is the one who can move his pebble to the vertex where opponent's pebble lies. What is the probability that Irja wins the game?
1994 AMC 12/AHSME, 27
A bag of popping corn contains $\frac{2}{3}$ white kernels and $\frac{1}{3}$ yellow kernels. Only $\frac{1}{2}$ of the white kernels will pop, whereas $\frac{2}{3}$ of the yellow ones will pop. A kernel is selected at random from the bag, and pops when placed in the popper. What is the probability that the kernel selected was white?
$ \textbf{(A)}\ \frac{1}{2} \qquad\textbf{(B)}\ \frac{5}{9} \qquad\textbf{(C)}\ \frac{4}{7} \qquad\textbf{(D)}\ \frac{3}{5} \qquad\textbf{(E)}\ \frac{2}{3} $
2008 Stanford Mathematics Tournament, 10
Six people play the following game: They have a cube, initially white. One by one, the players mark an $ X$ on a white face of the cube, and roll it like a die. The winner is the first person to roll an $ X$ (for example, player 1 wins with probability $ \frac {1}{6}$, while if none of players 1-5 win, player 6 will place an $ X$ on the last square and win for sure). What is the probability that the sixth player wins?
2000 Harvard-MIT Mathematics Tournament, 4
Five positive integers from $1$ to $15$ are chosen without replacement. What is the probability that their sum is divisible by $3$?