This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1111

2005 India IMO Training Camp, 3

Consider a matrix of size $n\times n$ whose entries are real numbers of absolute value not exceeding $1$. The sum of all entries of the matrix is $0$. Let $n$ be an even positive integer. Determine the least number $C$ such that every such matrix necessarily has a row or a column with the sum of its entries not exceeding $C$ in absolute value. [i]Proposed by Marcin Kuczma, Poland[/i]

2013 NIMO Summer Contest, 3

Tags: probability
Jacob and Aaron are playing a game in which Aaron is trying to guess the outcome of an unfair coin which shows heads $\tfrac{2}{3}$ of the time. Aaron randomly guesses ``heads'' $\tfrac{2}{3}$ of the time, and guesses ``tails'' the other $\tfrac{1}{3}$ of the time. If the probability that Aaron guesses correctly is $p$, compute $9000p$. [i]Proposed by Aaron Lin[/i]

2018 Brazil Undergrad MO, 12

Let $ABC$ be an equilateral triangle. $A $ point $P$ is chosen at random within this triangle. What is the probability that the sum of the distances from point $P$ to the sides of triangle $ABC$ are measures of the sides of a triangle?

2022-2023 OMMC FINAL ROUND, 6

Tags: probability
Evan writes a random positive integer on a board: the integer $k$ has probability $2^{-k}$ of being written. He keeps writing integers in this way repeatedly until he writes an integer that he had written before. He then takes all the integers he has written besides his last, sorts them in the order he first drew them, and also sorts them in increasing order, forming two sequences. For example, if he wrote $5,8,2,3,6,10,2$ in that order then his two sequences would be $5,8,2,3,6,10$ and $2,3,5,6,8,10.$ Find the probability that for all $k \in \{ 1,4,34 \},$ that $k$ was written, and $k$ appears in the same position in both sequences.

2019 LIMIT Category C, Problem 4

Tags: probability
Let $X,Y$ be i.i.d $\operatorname{Geom}(p)$. What is the conditional distribution of $X|X+Y=k$? $\textbf{(A)}~\operatorname{Uniform}\left\{1,2,\ldots,\left\lfloor\frac k2\right\rfloor\right\}$ $\textbf{(B)}~\operatorname{Uniform}\left\{1,2,\ldots,k\right\}$ $\textbf{(C)}~\operatorname{Uniform}\left\{1,2,\ldots,\left\lfloor\frac k2\right\rfloor+1\right\}$ $\textbf{(D)}~\text{None of the above}$

2003 AIME Problems, 13

A bug starts at a vertex of an equilateral triangle. On each move, it randomly selects one of the two vertices where it is not currently located, and crawls along a side of the triangle to that vertex. Given that the probability that the bug moves to its starting vertex on its tenth move is $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

2000 AIME Problems, 3

A deck of forty cards consists of four 1's, four 2's,..., and four 10's. A matching pair (two cards with the same number) is removed from the deck. Given that these cards are not returned to the deck, let $m/n$ be the probability that two randomly selected cards also form a pair, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1975 Spain Mathematical Olympiad, 8

Two real numbers between $0$ and $1$ are randomly chosen. Calculate the probability that any one of them is less than the square of the other.

2018 AIME Problems, 13

Tags: probability , dice
Misha rolls a standard, fair six-sided die until she rolls $1$-$2$-$3$ in that order on three consecutive rolls. The probability that she will roll the die an odd number of times is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2003 AMC 10, 20

Tags: probability
A base-$ 10$ three-digit number $ n$ is selected at random. Which of the following is closest to the probability that the base-$ 9$ representation and the base-$ 11$ representation of $ n$ are both three-digit numerals? $ \textbf{(A)}\ 0.3 \qquad \textbf{(B)}\ 0.4 \qquad \textbf{(C)}\ 0.5 \qquad \textbf{(D)}\ 0.6 \qquad \textbf{(E)}\ 0.7$

2004 Iran MO (3rd Round), 6

assume that we have a n*n table we fill it with 1,...,n such that each number exists exactly n times prove that there exist a row or column such that at least $\sqrt{n}$ diffrent number are contained.

2013 Costa Rica - Final Round, LRP2

From a set containing $6$ positive and consecutive integers they are extracted, randomly and with replacement, three numbers $a, b, c$. Determine the probability that even $a^b + c$ generates as a result .

2014 JHMMC 7 Contest, 1

1. What is the probability that a randomly chosen word of this sentence has exactly four letters?

2022 AMC 12/AHSME, 12

Tags: probability , dice
Kayla rolls four fair $6$-sided dice. What is the probability that at least one of the numbers Kayla rolls is greater than $4$ and at least two of the numbers she rolls are greater than $2$? $\textbf{(A)}\frac{2}{3}~\textbf{(B)}\frac{19}{27}~\textbf{(C)}\frac{59}{81}~\textbf{(D)}\frac{61}{81}~\textbf{(E)}\frac{7}{9}$

1985 IMO Longlists, 32

A collection of $2n$ letters contains $2$ each of $n$ different letters. The collection is partitioned into $n$ pairs, each pair containing $2$ letters, which may be the same or different. Denote the number of distinct partitions by $u_n$. (Partitions differing in the order of the pairs in the partition or in the order of the two letters in the pairs are not considered distinct.) Prove that $u_{n+1}=(n+1)u_n - \frac{n(n-1)}{2} u_{n-2}.$ [i]Similar Problem :[/i] A pack of $2n$ cards contains $n$ pairs of $2$ identical cards. It is shuffled and $2$ cards are dealt to each of $n$ different players. Let $p_n$ be the probability that every one of the $n$ players is dealt two identical cards. Prove that $\frac{1}{p_{n+1}}=\frac{n+1}{p_n} + \frac{n(n-1)}{2p_{n-2}}.$

1987 AMC 12/AHSME, 26

Tags: probability
The amount $2.5$ is split into two nonnegative real numbers uniformly at random, for instance, into $2.143$ and $.357$, or into $\sqrt{3}$ and $2.5-\sqrt{3}.$ Then each number is rounded to its nearest integer, for instance, $2$ and $0$ in the first case above, $2$ and $1$ in the second. What is the probability that the two integers sum to $3$? $ \textbf{(A)}\ \frac{1}{4} \qquad\textbf{(B)}\ \frac{2}{5} \qquad\textbf{(C)}\ \frac{1}{2} \qquad\textbf{(D)}\ \frac{3}{5} \qquad\textbf{(E)}\ \frac{3}{4} $

2015 Kyoto University Entry Examination, 3

Tags: probability
3. Six points A, B, C, D, E, F are connected with segments length of $1$. Each segment is painted red or black probability of $\frac{1}{2}$ independence. When point A to Point E exist through segments painted red, let $X$ be. Let $X=0$ be non-exist it. Then, for $n=0,2,4$, find the probability of $X=n$.

1999 IMC, 2

We roll a regular 6-sided dice $n$ times. What is the probabilty that the total number of eyes rolled is a multiple of 5?

2008 Pre-Preparation Course Examination, 5

A permutation $ \pi$ is selected randomly through all $ n$-permutations. a) if \[ C_a(\pi)\equal{}\mbox{the number of cycles of length }a\mbox{ in }\pi\] then prove that $ E(C_a(\pi))\equal{}\frac1a$ b) Prove that if $ \{a_1,a_2,\dots,a_k\}\subset\{1,2,\dots,n\}$ the probability that $ \pi$ does not have any cycle with lengths $ a_1,\dots,a_k$ is at most $ \frac1{\sum_{i\equal{}1}^ka_i}$

2019 PUMaC Combinatorics B, 2

Suppose Alan, Michael, Kevin, Igor, and Big Rahul are in a running race. It is given that exactly one pair of people tie (for example, two people both get second place), so that no other pair of people end in the same position. Each competitor has equal skill; this means that each outcome of the race, given that exactly two people tie, is equally likely. The probability that Big Rahul gets first place (either by himself or he ties for first) can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m+n$.

2020 AMC 10, 15

A positive integer divisor of $12!$ is chosen at random. The probability that the divisor chosen is a perfect square can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$? $\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 23$

2019 AMC 12/AHSME, 19

Tags: probability
Raashan, Sylvia, and Ted play the following game. Each starts with $\$1$. A bell rings every $15$ seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives $\$1$ to that player. What is the probability that after the bell has rung $2019$ times, each player will have $\$1$? (For example, Raashan and Ted may each decide to give $\$1$ to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have $\$0$, Sylvia would have $\$2$, and Ted would have $\$1$, and and that is the end of the first round of play. In the second round Raashan has no money to give, but Sylvia and Ted might choose each other to give their $\$1$ to, and and the holdings will be the same as the end of the second [sic] round. $\textbf{(A) } \frac{1}{7} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{1}{2} \qquad\textbf{(E) } \frac{2}{3}$

2014 HMNT, 8

Tags: probability
Let $H$ be a regular hexagon with side length one. Peter picks a point $P$ uniformly and at random within $H$, then draws the largest circle with center $P$ that is contained in $H$. What is this probability that the radius of this circle is less than $1/2$ ?

2019 PUMaC Geometry B, 4

Suppose we choose two numbers $x,y\in[0,1]$ uniformly at random. If the probability that the circle with center $(x,y)$ and radius $|x-y|$ lies entirely within the unit square $[0,1]\times [0,1]$ is written as $\tfrac{p}{q}$ with $p$ and $q$ relatively prime nonnegative integers, then what is $p^2+q^2$?

2019 AMC 12/AHSME, 20

Tags: probability
Real numbers between 0 and 1, inclusive, are chosen in the following manner. A fair coin is flipped. If it lands heads, then it is flipped again and the chosen number is 0 if the second flip is heads and 1 if the second flip is tails. On the other hand, if the first coin flip is tails, then the number is chosen uniformly at random from the closed interval $[0,1]$. Two random numbers $x$ and $y$ are chosen independently in this manner. What is the probability that $|x-y| > \tfrac{1}{2}$? $\textbf{(A)} \frac{1}{3} \qquad \textbf{(B)} \frac{7}{16} \qquad \textbf{(C)} \frac{1}{2} \qquad \textbf{(D)} \frac{9}{16} \qquad \textbf{(E)} \frac{2}{3}$