This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1111

2008 Hungary-Israel Binational, 2

For every natural number $ t$, $ f(t)$ is the probability that if a fair coin is tossed $ t$ times, the number of times we get heads is 2008 more than the number of tails. What is the value of $ t$ for which $ f(t)$ attains its maximum? (if there is more than one, describe all of them)

2012 Miklós Schweitzer, 7

Let $\Gamma$ be a simple curve, lying inside a circle of radius $r$, rectifiable and of length $\ell$. Prove that if $\ell > kr\pi$, then there exists a circle of radius $r$ which intersects $\Gamma$ in at least $k+1$ distinct points.

1976 AMC 12/AHSME, 8

A point in the plane, both of whose rectangular coordinates are integers with absolute values less than or equal to four, is chosen at random, with all such points having an equal probability of being chosen. What is the probability that the distance from the point to the origin is at most two units? $\textbf{(A) }\frac{13}{81}\qquad\textbf{(B) }\frac{15}{81}\qquad\textbf{(C) }\frac{13}{64}\qquad\textbf{(D) }\frac{\pi}{16}\qquad \textbf{(E) }\text{the square of a rational number}$

2017 Miklós Schweitzer, 10

Let $X_1,X_2,\ldots$ be independent and identically distributed random variables with distribution $\mathbb{P}(X_1=0)=\mathbb{P}(X_1=1)=\frac12$. Let $Y_1$, $Y_2$, $Y_3$, and $Y_4$ be independent, identically distributed random variables, where $Y_1:=\sum_{k=1}^\infty \frac{X_k}{16^k}$. Decide whether the random variables $Y_1+2Y_2+4Y_3+8Y_4$ and $Y_1+4Y_3$ are absolutely continuous.

2012 AMC 12/AHSME, 13

Two parabolas have equations $y=x^2+ax+b$ and $y=x^2+cx+d$, where $a$, $b$, $c$, and $d$ are integers (not necessarily different), each chosen independently by rolling a fair six-sided die. What is the probability that the parabolas have at least one point in common? $\textbf{(A)}\ \frac{1}{2} \qquad\textbf{(B)}\ \frac{25}{36} \qquad\textbf{(C)}\ \frac{5}{6} \qquad\textbf{(D)}\ \frac{31}{36} \qquad\textbf{(E)}\ 1 $

2006 Purple Comet Problems, 19

There is a very popular race course where runners frequently go for a daily run. Assume that all runners randomly select a start time, a starting position on the course, and a direction to run. Also assume that all runners make exactly one complete circuit of the race course, all runners run at the same speed, and all runners complete the circuit in one hour. Suppose that one afternoon you go for a run on this race course, and you count $300$ runners which you pass going in the opposite direction, although some of those runners you count twice since you pass them twice. What is the expected value of the number of different runners that you pass not counting duplicates?

2007 Putnam, 6

For each positive integer $ n,$ let $ f(n)$ be the number of ways to make $ n!$ cents using an unordered collection of coins, each worth $ k!$ cents for some $ k,\ 1\le k\le n.$ Prove that for some constant $ C,$ independent of $ n,$ \[ n^{n^2/2\minus{}Cn}e^{\minus{}n^2/4}\le f(n)\le n^{n^2/2\plus{}Cn}e^{\minus{}n^2/4}.\]

2017 AMC 12/AHSME, 17

Tags: probability
A coin is biased in such a way that on each toss the probability of heads is $\frac{2}{3}$ and the probability of tails is $\frac{1}{3}$. The outcomes of the tosses are independent. A player has the choice of playing Game A or Game B. In Game A she tosses the coin three times and wins if all three outcomes are the same. In Game B she tosses the coin four times and wins if both the outcomes of the first and second tosses are the same and the outcomes of the third and fourth tosses are the same. How do the chances of winning Game A compare to the chances of winning Game B? $\textbf{(A)} \text{ The probability of winning Game A is }\frac{4}{81}\text{ less than the probability of winning Game B.} $ $\textbf{(B)} \text{ The probability of winning Game A is }\frac{2}{81}\text{ less than the probability of winning Game B.}$ $\textbf{(C)} \text{ The probabilities are the same.}$ $\textbf{(D)} \text{ The probability of winning Game A is }\frac{2}{81}\text{ greater than the probability of winning Game B.}$ $\textbf{(E)} \text{ The probability of winning Game A is }\frac{4}{81}\text{ greater than the probability of winning Game B.}$

1985 AMC 12/AHSME, 24

A non-zero digit is chosen in such a way that the probability of choosing digit $ d$ is $ \log_{10}(d\plus{}1) \minus{} \log_{10} d$. The probability that the digit $ 2$ is chosen is exactly $ \frac12$ the probability that the digit chosen is in the set $ \textbf{(A)}\ \{2,3\} \qquad \textbf{(B)}\ \{3,4\} \qquad \textbf{(C)}\ \{4,5,6,7,8\} \qquad \textbf{(D)}\ \{5,6,7,8,9\} \qquad \textbf{(E)}\ \{4,5,6,7,8,9\}$

2012 AMC 10, 18

Suppose that one of every $500$ people in a certain population has a particular disease, which displays no symptoms. A blood test is available for screening for this disease. For a person who has this disease, the test always turns out positive. For a person who does not have the disease, however, there is a $2\%$ false positive rate; in other words, for such people, $98\%$ of the time the test will turn out negative, but $2\%$ of the time the test will turn out positive and will incorrectly indicate that the person has the disease. Let $p$ be the probability that a person who is chosen at random from the population and gets a positive test result actually has the disease. Which of the following is closest to $p$? $ \textbf{(A)}\ \frac{1}{98}\qquad\textbf{(B)}\ \frac{1}{9}\qquad\textbf{(C)}\ \frac{1}{11}\qquad\textbf{(D)}\ \frac{49}{99}\qquad\textbf{(E)}\ \frac{98}{99}$

2007 India IMO Training Camp, 3

Let $\mathbb X$ be the set of all bijective functions from the set $S=\{1,2,\cdots, n\}$ to itself. For each $f\in \mathbb X,$ define \[T_f(j)=\left\{\begin{aligned} 1, \ \ \ & \text{if} \ \ f^{(12)}(j)=j,\\ 0, \ \ \ & \text{otherwise}\end{aligned}\right.\] Determine $\sum_{f\in\mathbb X}\sum_{j=1}^nT_{f}(j).$ (Here $f^{(k)}(x)=f(f^{(k-1)}(x))$ for all $k\geq 2.$)

2017 AMC 12/AHSME, 10

Tags: probability
Chloé chooses a real number uniformly at random from the interval $[0, 2017]$. Independently, Laurent chooses a real number uniformly at random from the interval $[0,4034]$. What is the probability that Laurent's number is greater than Chloé's number? $\textbf{(A)}~\frac12 \qquad \textbf{(B)}~\frac23 \qquad \textbf{(C)}~\frac34 \qquad \textbf{(D)}~\frac56\qquad \textbf{(E)}~\frac78$

2002 AMC 12/AHSME, 18

A point $ P$ is randomly selected from the rectangular region with vertices $ (0, 0)$, $ (2, 0)$, $ (2, 1)$, $ (0, 1)$. What is the probability that $ P$ is closer to the origin than it is to the point $ (3, 1)$? $ \textbf{(A)}\ \frac{1}{2} \qquad \textbf{(B)}\ \frac{2}{3} \qquad \textbf{(C)}\ \frac{3}{4} \qquad \textbf{(D)}\ \frac{4}{5} \qquad \textbf{(E)}\ 1$

2008 ITest, 35

Tags: probability
Let $b$ be the probability that the cards are from different suits. Compute $\lfloor1000b\rfloor$.

2018 Costa Rica - Final Round, LRP5

The Matini company released a special album with the flags of the $ 12$ countries that compete in the CONCACAM Mathematics Cup. Each postcard envelope has two flags chosen randomly. Determine the minimum number of envelopes that need to be opened to that the probability of having a repeated flag is $50\%$.

2007 District Olympiad, 2

Let $f : \left[ 0, 1 \right] \to \mathbb R$ be a continuous function and $g : \left[ 0, 1 \right] \to \left( 0, \infty \right)$. Prove that if $f$ is increasing, then \[\int_{0}^{t}f(x) g(x) \, dx \cdot \int_{0}^{1}g(x) \, dx \leq \int_{0}^{t}g(x) \, dx \cdot \int_{0}^{1}f(x) g(x) \, dx .\]

2013 Online Math Open Problems, 31

Beyond the Point of No Return is a large lake containing 2013 islands arranged at the vertices of a regular $2013$-gon. Adjacent islands are joined with exactly two bridges. Christine starts on one of the islands with the intention of burning all the bridges. Each minute, if the island she is on has at least one bridge still joined to it, she randomly selects one such bridge, crosses it, and immediately burns it. Otherwise, she stops. If the probability Christine burns all the bridges before she stops can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find the remainder when $m+n$ is divided by $1000$. [i]Evan Chen[/i]

2013 NIMO Problems, 2

Square $\mathcal S$ has vertices $(1,0)$, $(0,1)$, $(-1,0)$ and $(0,-1)$. Points $P$ and $Q$ are independently selected, uniformly at random, from the perimeter of $\mathcal S$. Determine, with proof, the probability that the slope of line $PQ$ is positive. [i]Proposed by Isabella Grabski[/i]

1989 Putnam, B1

A dart, thrown at random, hits a square target. Assuming that any two parts of the target of equal area are equall likely to be hit, find the probability that hte point hit is nearer to the center than any edge.

2009 Purple Comet Problems, 13

Greta is completing an art project. She has twelve sheets of paper: four red, four white, and four blue. She also has twelve paper stars: four red, four white, and four blue. She randomly places one star on each sheet of paper. The probability that no star will be placed on a sheet of paper that is the same color as the star is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $n - 100m.$

2023 AMC 12/AHSME, 19

Tags: probability
Each of $2023$ balls is placed in on of $3$ bins. Which of the following is closest to the probability that each of the bins will contain an odd number of balls? $\textbf{(A) } \frac{2}{3} \qquad \textbf{(B) } \frac{3}{10} \qquad \textbf{(C) } \frac{1}{2} \qquad \textbf{(D) } \frac{1}{3} \qquad \textbf{(E) } \frac{1}{4}$

2021 Simon Marais Mathematical Competition, B1

Let $n \ge 2$ be an integer, and let $O$ be the $n \times n$ matrix whose entries are all equal to $0$. Two distinct entries of the matrix are chosen uniformly at random, and those two entries are changed from $0$ to $1$. Call the resulting matrix $A$. Determine the probability that $A^2 = O$, as a function of $n$.

2017 VJIMC, 2

We say that we extend a finite sequence of positive integers $(a_1,\dotsc,a_n)$ if we replace it by \[(1,2,\dotsc,a_1-1,a_1,1,2,\dotsc,a_2-1,a_2,1,2,\dotsc,a_3-1,a_3,\dotsc,1,2,\dotsc,a_n-1,a_n)\] i.e., each element $k$ of the original sequence is replaced by $1,2,\dotsc,k$. Géza takes the sequence $(1,2,\dotsc,9)$ and he extends it $2017$ times. Then he chooses randomly one element of the resulting sequence. What is the probability that the chosen element is $1$?

2021 JHMT HS, 3

Let $(x,y)$ be the coordinates of a point chosen uniformly at random within the unit square with vertices at $(0,0), (0,1), (1,0),$ and $(1,1).$ The probability that $|x - \tfrac{1}{2}| + |y - \tfrac{1}{2}| < \tfrac{1}{2}$ is $\tfrac{p}{q},$ where $p$ and $q$ are relatively prime integers. Find $p + q.$

2005 iTest, 13

Tags: probability
In a moment of impaired thought, Joe decides he wants to dress up as a member of NSYNC for his school Halloween party that night. If he dresses up as JC Chasez, he has a probability of $25\%$ of getting beat up at the party. If he dresses up as Justin Timberlake, he has a $60\%$ probability of getting beat up at the party. If he dresses up as any other member of NSYNC, he won’t get beat up because no one will recognize his costume. If there is an equal probability of him dressing up as any of the $5$ NSYNC members, what is the probability he will get beat up at the Halloween party?