This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 232

2010 CentroAmerican, 2

Let $ABC$ be a triangle and $L$, $M$, $N$ be the midpoints of $BC$, $CA$ and $AB$, respectively. The tangent to the circumcircle of $ABC$ at $A$ intersects $LM$ and $LN$ at $P$ and $Q$, respectively. Show that $CP$ is parallel to $BQ$.

2018 Romania Team Selection Tests, 1

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2014 Chile TST IMO, 3

In a triangle \( ABC \), \( D \) is the foot of the altitude from \( C \). Let \( P \in \overline{CD} \). \( Q \) is the intersection of \( \overline{AP} \) and \( \overline{CB} \), and \( R \) is the intersection of \( \overline{BP} \) and \( \overline{CA} \). Prove that \( \angle RDC = \angle QDC \).

2009 German National Olympiad, 5

Let a triangle $ ABC$. $ E,F$ in segment $ AB$ so that $ E$ lie between $ AF$ and half of circle with diameter $ EF$ is tangent with $ BC,CA$ at $ G,H$. $ HF$ cut $ GE$ at $ S$, $ HE$ cut $ FG$ at $ T$. Prove that $ C$ is midpoint of $ ST$.

2017 Junior Balkan Team Selection Tests - Moldova, Problem 3

Let $ABC$ be a triangle inscribed in a semicircle with center $O$ and diameter $BC.$ Two tangent lines to the semicircle at $A$ and $B$ intersect at $D.$ Prove that $DC$ goes through the midpoint of the altitude $AH$ of triangle $ABC.$

2019 USA TSTST, 9

Let $ABC$ be a triangle with incenter $I$. Points $K$ and $L$ are chosen on segment $BC$ such that the incircles of $\triangle ABK$ and $\triangle ABL$ are tangent at $P$, and the incircles of $\triangle ACK$ and $\triangle ACL$ are tangent at $Q$. Prove that $IP=IQ$. [i]Ankan Bhattacharya[/i]

2022 Brazil Team Selection Test, 4

Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.

2011 India Regional Mathematical Olympiad, 5

Let $ABCD$ be a convex quadrilateral. Let $E,F,G,H$ be the midpoints of $AB,BC,CD,DA$ respectively. If $AC,BD,EG,FH$ concur at a point $O,$ prove that $ABCD$ is a parallelogram.

2010 Indonesia MO, 2

Given an acute triangle $ABC$ with $AC>BC$ and the circumcenter of triangle $ABC$ is $O$. The altitude of triangle $ABC$ from $C$ intersects $AB$ and the circumcircle at $D$ and $E$, respectively. A line which passed through $O$ which is parallel to $AB$ intersects $AC$ at $F$. Show that the line $CO$, the line which passed through $F$ and perpendicular to $AC$, and the line which passed through $E$ and parallel with $DO$ are concurrent. [i]Fajar Yuliawan, Bandung[/i]

2014 Contests, 4

We are given a circle $c(O,R)$ and two points $A,B$ so that $R<AB<2R$.The circle $c_1 (A,r)$ ($0<r<R$) crosses the circle $c$ at C,D ($C$ belongs to the short arc $AB$).From $B$ we consider the tangent lines $BE,BF$ to the circle $c_1$ ,in such way that $E$ lays out of the circle $c$.If $M\equiv EC\cap DF$ show that the quadrilateral $BCFM$ is cyclic.

2007 China Western Mathematical Olympiad, 3

Let $ P$ be an interior point of an acute angled triangle $ ABC$. The lines $ AP,BP,CP$ meet $ BC,CA,AB$ at points $ D,E,F$ respectively. Given that triangle $ \triangle DEF$ and $ \triangle ABC$ are similar, prove that $ P$ is the centroid of $ \triangle ABC$.

2010 India National Olympiad, 1

Let $ ABC$ be a triangle with circum-circle $ \Gamma$. Let $ M$ be a point in the interior of triangle $ ABC$ which is also on the bisector of $ \angle A$. Let $ AM, BM, CM$ meet $ \Gamma$ in $ A_{1}, B_{1}, C_{1}$ respectively. Suppose $ P$ is the point of intersection of $ A_{1}C_{1}$ with $ AB$; and $ Q$ is the point of intersection of $ A_{1}B_{1}$ with $ AC$. Prove that $ PQ$ is parallel to $ BC$.

1991 Arnold's Trivium, 45

Find the self-intersection index of the surface $x^4+y^4=1$ in the projective plane $\text{CP}^2$.

2010 Romanian Masters In Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2017 Taiwan TST Round 3, 4

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. [i]Proposed by Evan Chen, Taiwan[/i]

2007 Romania Team Selection Test, 2

Let $ABC$ be a triangle, and $\omega_{a}$, $\omega_{b}$, $\omega_{c}$ be circles inside $ABC$, that are tangent (externally) one to each other, such that $\omega_{a}$ is tangent to $AB$ and $AC$, $\omega_{b}$ is tangent to $BA$ and $BC$, and $\omega_{c}$ is tangent to $CA$ and $CB$. Let $D$ be the common point of $\omega_{b}$ and $\omega_{c}$, $E$ the common point of $\omega_{c}$ and $\omega_{a}$, and $F$ the common point of $\omega_{a}$ and $\omega_{b}$. Show that the lines $AD$, $BE$ and $CF$ have a common point.

2008 Iran Team Selection Test, 2

Suppose that $ I$ is incenter of triangle $ ABC$ and $ l'$ is a line tangent to the incircle. Let $ l$ be another line such that intersects $ AB,AC,BC$ respectively at $ C',B',A'$. We draw a tangent from $ A'$ to the incircle other than $ BC$, and this line intersects with $ l'$ at $ A_1$. $ B_1,C_1$ are similarly defined. Prove that $ AA_1,BB_1,CC_1$ are concurrent.

2020 Brazil Team Selection Test, 3

Let $ABCD$ be a quadrilateral with a incircle $\omega$. Let $I$ be the center of $\omega$, suppose that the lines $AD$ and $BC$ intersect at $Q$ and the lines $AB$ and $CD$ intersect at $P$ with $B$ is in the segment $AP$ and $D$ is in the segment $AQ$. Let $X$ and $Y$ the incenters of $\triangle PBD$ and $\triangle QBD$ respectively. Let $R$ be the intersection of $PY$ and $QX$. Prove that the line $IR$ is perpendicular to $BD$.

2023 Brazil Team Selection Test, 4

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

2009 ITAMO, 2

Let $ABC$ be an acute-angled scalene triangle and $\Gamma$ be its circumcircle. $K$ is the foot of the internal bisector of $\angle BAC$ on $BC$. Let $M$ be the midpoint of the arc $BC$ containing $A$. $MK$ intersect $\Gamma$ again at $A'$. $T$ is the intersection of the tangents at $A$ and $A'$. $R$ is the intersection of the perpendicular to $AK$ at $A$ and perpendicular to $A'K$ at $A'$. Show that $T, R$ and $K$ are collinear.

2002 Pan African, 5

Let $\triangle{ABC}$ be an acute angled triangle. The circle with diameter AB intersects the sides AC and BC at points E and F respectively. The tangents drawn to the circle through E and F intersect at P. Show that P lies on the altitude through the vertex C.

2003 Iran MO (3rd Round), 6

let the incircle of a triangle ABC touch BC,AC,AB at A1,B1,C1 respectively. M and N are the midpoints of AB1 and AC1 respectively. MN meets A1C1 at T . draw two tangents TP and TQ through T to incircle. PQ meets MN at L and B1C1 meets PQ at K . assume I is the center of the incircle . prove IK is parallel to AL

2014 ELMO Shortlist, 12

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2007 China Team Selection Test, 2

Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to $ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.

2001 Macedonia National Olympiad, 3

Let $ABC$ be a scalene triangle and $k$ be its circumcircle. Let $t_A,t_B,t_C$ be the tangents to $k$ at $A, B, C,$ respectively. Prove that points $AB\cap t_C$, $CA\cap t_B$, and $BC\cap t_A$ exist, and that they are collinear.