Found problems: 1148
2011 NIMO Summer Contest, 14
In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$.
[i]Proposed by Eugene Chen
[/i]
1998 All-Russian Olympiad, 5
A sequence of distinct circles $\omega_1, \omega_2, \cdots$ is inscribed in the parabola $y=x^2$ so that $\omega_n$ and $\omega_{n+1}$ are tangent for all $n$. If $\omega_1$ has diameter $1$ and touches the parabola at $(0,0)$, find the diameter of $\omega_{1998}$.
Estonia Open Junior - geometry, 2016.2.4
Let $d$ be a positive number. On the parabola, whose equation has the coefficient $1$ at the quadratic term, points $A, B$ and $C$ are chosen in such a way that the difference of the $x$-coordinates of points $A$ and $B$ is $d$ and the difference of the $x$-coordinates of points $B$ and $C$ is also $d$. Find the area of the triangle $ABC$.
1990 Baltic Way, 13
Show that the equation $x^2-7y^2 = 1$ has infinitely many solutions in natural numbers.
2003 Vietnam Team Selection Test, 3
Let $n$ be a positive integer. Prove that the number $2^n + 1$ has no prime divisor of the form $8 \cdot k - 1$, where $k$ is a positive integer.
2000 National Olympiad First Round, 2
Discriminant of a second degree polynomial with integer coefficients cannot be
$ \textbf{(A)}\ 23
\qquad\textbf{(B)}\ 24
\qquad\textbf{(C)}\ 25
\qquad\textbf{(D)}\ 28
\qquad\textbf{(E)}\ 33
$
2005 Taiwan TST Round 2, 1
Prove that for any quadratic polynomial $f(x)=x^2+px+q$ with integer coefficients, it is possible to find another polynomial $q(x)=2x^2+rx+s$ with integer coefficients so that \[\{f(x)|x \in \mathbb{Z} \} \cap \{g(x)|x \in \mathbb{Z} \} = \emptyset .\]
2013 Indonesia MO, 6
A positive integer $n$ is called "strong" if there exists a positive integer $x$ such that $x^{nx} + 1$ is divisible by $2^n$.
a. Prove that $2013$ is strong.
b. If $m$ is strong, determine the smallest $y$ (in terms of $m$) such that $y^{my} + 1$ is divisible by $2^m$.
2017 Purple Comet Problems, 6
For some constant $k$ the polynomial $p(x) = 3x^2 + kx + 117$ has the property that $p(1) = p(10)$. Evaluate $p(20)$.
2010 Stanford Mathematics Tournament, 1
Compute
\[\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}}\]
2017 AIME Problems, 6
Find the sum of all positive integers $n$ such that $\sqrt{n^2+85n+2017}$ is an integer.
2000 AIME Problems, 13
The equation $2000x^6+100x^5+10x^3+x-2=0$ has exactly two real roots, one of which is $\frac{m+\sqrt{n}}r,$ where $m, n$ and $r$ are integers, $m$ and $r$ are relatively prime, and $r>0.$ Find $m+n+r.$
2024 Brazil National Olympiad, 5
Esmeralda chooses two distinct positive integers \(a\) and \(b\), with \(b > a\), and writes the equation
\[
x^2 - ax + b = 0
\]
on the board. If the equation has distinct positive integer roots \(c\) and \(d\), with \(d > c\), she writes the equation
\[
x^2 - cx + d = 0
\]
on the board. She repeats the procedure as long as she obtains distinct positive integer roots. If she writes an equation for which this does not occur, she stops.
a) Show that Esmeralda can choose \(a\) and \(b\) such that she will write exactly 2024 equations on the board.
b) What is the maximum number of equations she can write knowing that one of the initially chosen numbers is 2024?
Oliforum Contest II 2009, 3
Find all $ (x,y,z) \in \mathbb{Z}^3$ such that $ x^3 \minus{} 5x \equal{} 1728^{y}\cdot 1733^z \minus{} 17$.
[i](Paolo Leonetti)[/i]
2016 Saudi Arabia BMO TST, 1
Let $P_i(x) = x^2 + b_i x + c_i , i = 1,2, ..., n$ be pairwise distinct polynomials of degree $2$ with real coefficients so that for any $0 \le i < j \le n , i, j \in N$, the polynomial $Q_{i,j}(x) = P_i(x) + P_j(x)$ has only one real root. Find the greatest possible value of $n$.
2006 Hungary-Israel Binational, 1
A point $ P$ inside a circle is such that there are three chords of the same length passing through $ P$. Prove that $ P$ is the center of the circle.
2009 Vietnam Team Selection Test, 3
Let a, b be positive integers. a, b and a.b are not perfect squares.
Prove that at most one of following equations
$ ax^2 \minus{} by^2 \equal{} 1$ and $ ax^2 \minus{} by^2 \equal{} \minus{} 1$
has solutions in positive integers.
2019 Belarus Team Selection Test, 2.1
Given a quadratic trinomial $p(x)$ with integer coefficients such that $p(x)$ is not divisible by $3$ for all integers $x$.
Prove that there exist polynomials $f(x)$ and $h(x)$ with integer coefficients such that
$$
p(x)\cdot f(x)+3h(x)=x^6+x^4+x^2+1.
$$
[i](I. Gorodnin)[/i]
1986 AIME Problems, 1
What is the sum of the solutions to the equation $\sqrt[4]x =\displaystyle \frac{12}{7-\sqrt[4]x}$?
Kettering MO, 2005
Today was the 5th Kettering Olympiad - and here are the problems, which are very good intermediate problems.
1. Find all real $x$ so that $(1+x^2)(1+x^4)=4x^3$
2. Mark and John play a game. They have $100$ pebbles on a table. They take turns taking at least one at at most eight pebbles away. The person to claim the last pebble wins. Mark goes first. Can you find a way for Mark to always win? What about John?
3. Prove that
$\sin x + \sin 3x + \sin 5x + ... + \sin 11 x = (1-\cos 12 x)/(2 \sin x)$
4. Mark has $7$ pieces of paper. He takes some of them and splits each into $7$ pieces of paper. He repeats this process some number of times. He then tells John he has $2000$ pieces of paper. John tells him he is wrong. Why is John right?
5. In a triangle $ABC$, the altitude, angle bisector, and median split angle $A$ into four equal angles. Find the angles of $ABC.$
6. There are $100$ cities. There exist airlines connecting pairs of cities.
a) Find the minimal number of airlines such that with at most $k$ plane changes, one can go from any city to any other city.
b) Given that there are $4852$ airlines, show that, given any schematic, one can go from any city to any other city.
2011 Math Prize For Girls Problems, 7
If $z$ is a complex number such that
\[
z + z^{-1} = \sqrt{3},
\]
what is the value of
\[
z^{2010} + z^{-2010} \, ?
\]
2011 Moldova Team Selection Test, 2
Find all pairs of real number $x$ and $y$ which simultaneously satisfy the following 2 relations:
$x+y+4=\frac{12x+11y}{x^2+y^2}$
$y-x+3=\frac{11x-12y}{x^2+y^2}$
2009 Princeton University Math Competition, 4
Given that $P(x)$ is the least degree polynomial with rational coefficients such that
\[P(\sqrt{2} + \sqrt{3}) = \sqrt{2},\] find $P(10)$.
1999 Harvard-MIT Mathematics Tournament, 7
Find an ordered pair $(a,b)$ of real numbers for which $x^2+ax+b$ has a non-real root whose cube is $343$.
2004 Harvard-MIT Mathematics Tournament, 5
There exists a positive real number $x$ such that $ \cos (\arctan (x)) = x $. Find the value of $x^2$.