Found problems: 1148
2014 Harvard-MIT Mathematics Tournament, 5
Find the sum of all real numbers $x$ such that $5x^4-10x^3+10x^2-5x-11=0$.
1980 AMC 12/AHSME, 14
If the function $f$ is defined by
\[ f(x)=\frac{cx}{2x+3} , ~~~x\neq -\frac 32 , \] satisfies $x=f(f(x))$ for all real numbers $x$ except $-\frac 32$, then $c$ is
$\text{(A)} \ -3 \qquad \text{(B)} \ - \frac{3}{2} \qquad \text{(C)} \ \frac{3}{2} \qquad \text{(D)} \ 3 \qquad \text{(E)} \ \text{not uniquely determined}$
2006 Regional Competition For Advanced Students, 1
Let $ 0 < x <y$ be real numbers. Let
$ H\equal{}\frac{2xy}{x\plus{}y}$ , $ G\equal{}\sqrt{xy}$ , $ A\equal{}\frac{x\plus{}y}{2}$ , $ Q\equal{}\sqrt{\frac{x^2\plus{}y^2}{2}}$
be the harmonic, geometric, arithmetic and root mean square (quadratic mean) of $ x$ and $ y$. As generally known $ H<G<A<Q$. Arrange the intervals $ [H,G]$ , $ [G,A]$ and $ [A,Q]$ in ascending order by their length.
2014 Iran MO (2nd Round), 3
Let $ x,y,z $ be three non-negative real numbers such that \[x^2+y^2+z^2=2(xy+yz+zx). \] Prove that \[\dfrac{x+y+z}{3} \ge \sqrt[3]{2xyz}.\]
1992 Vietnam Team Selection Test, 3
Let $ABC$ a triangle be given with $BC = a$, $CA = b$, $AB = c$ ($a \neq b \neq c \neq a$). In plane ($ABC$) take the points $A'$, $B'$, $C'$ such that:
[b]I.[/b] The pairs of points $A$ and $A'$, $B$ and $B'$, $C$ and $C'$ either all lie in one side either all lie in different sides under the lines $BC$, $CA$, $AB$ respectively;
[b]II.[/b] Triangles $A'BC$, $B'CA$, $C'AB$ are similar isosceles triangles.
Find the value of angle $A'BC$ as function of $a, b, c$ such that lengths $AA', BB', CC'$ are not sides of an triangle. (The word "triangle" must be understood in its ordinary meaning: its vertices are not collinear.)
PEN A Problems, 18
Let $m$ and $n$ be natural numbers and let $mn+1$ be divisible by $24$. Show that $m+n$ is divisible by $24$.
2016 KOSOVO TST, 3
Equations $x^2+ax+b=0$ and $x^2+px+q=0$ have a common root.Find quadratic equation roots of which are two other roots.
2011 Kazakhstan National Olympiad, 6
Given a positive integer $n$. One of the roots of a quadratic equation $x^{2}-ax +2 n = 0$ is equal to
$\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}$. Prove that $2\sqrt{2n}\le a\le 3\sqrt{n}$
2005 Taiwan National Olympiad, 3
If positive integers $p,q,r$ are such that the quadratic equation $px^2-qx+r=0$ has two distinct real roots in the open interval $(0,1)$, find the minimum value of $p$.
2006 District Olympiad, 4
a) Find two sets $X,Y$ such that $X\cap Y =\emptyset$, $X\cup Y = \mathbb Q^{\star}_{+}$ and $Y = \{a\cdot b \mid a,b \in X \}$.
b) Find two sets $U,V$ such that $U\cap V =\emptyset$, $U\cup V = \mathbb R$ and $V = \{x+y \mid x,y \in U \}$.
2005 AMC 12/AHSME, 24
Let $ P(x) \equal{} (x \minus{} 1)(x \minus{} 2)(x \minus{} 3)$. For how many polynomials $ Q(x)$ does there exist a polynomial $ R(x)$ of degree 3 such that $ P(Q(x)) \equal{} P(x) \cdot R(x)$?
$ \textbf{(A)}\ 19\qquad
\textbf{(B)}\ 22\qquad
\textbf{(C)}\ 24\qquad
\textbf{(D)}\ 27\qquad
\textbf{(E)}\ 32$
2001 Bundeswettbewerb Mathematik, 2
For a sequence $ a_i \in \mathbb{R}, i \in \{0, 1, 2, \ldots\}$ we have $ a_0 \equal{} 1$ and \[ a_{n\plus{}1} \equal{} a_n \plus{} \sqrt{a_{n\plus{}1} \plus{} a_n} \quad \forall n \in \mathbb{N}.\] Prove that this sequence is unique and find an explicit formula for this recursively defined sequence.
2018 Romania National Olympiad, 3
Let $f,g : \mathbb{R} \to \mathbb{R}$ be two quadratics such that, for any real number $r,$ if $f(r)$ is an integer, then $g(r)$ is also an integer.
Prove that there are two integers $m$ and $n$ such that $$g(x)=mf(x)+n, \: \forall x \in \mathbb{R}$$
2008 India National Olympiad, 2
Find all triples $ \left(p,x,y\right)$ such that $ p^x\equal{}y^4\plus{}4$, where $ p$ is a prime and $ x$ and $ y$ are natural numbers.
1992 China National Olympiad, 2
Given nonnegative real numbers $x_1,x_2,\dots ,x_n$, let $a=min\{x_1, x_2,\dots ,x_n\}$. Prove that the following inequality holds:
\[ \sum^{n}_{i=1}\dfrac{1+x_i}{1+x_{i+1}}\le n+\dfrac{1}{(1+a)^2}\sum^{n}_{i=1}(x_i-a)^2 \quad\quad (x_{n+1}=x_1),\]
and equality occurs if and only if $x_1=x_2=\dots =x_n$.
2006 Nordic, 2
Real numbers $x,y,z$ are not all equal and satisfy $x+\frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x}=k$. Find all possible values of $k$.
1987 India National Olympiad, 6
Prove that if coefficients of the quadratic equation $ ax^2\plus{}bx\plus{}c\equal{}0$ are odd integers, then the roots of the equation cannot be rational numbers.
2003 China Team Selection Test, 2
Positive integer $n$ cannot be divided by $2$ and $3$, there are no nonnegative integers $a$ and $b$ such that $|2^a-3^b|=n$. Find the minimum value of $n$.
2023 Silk Road, 3
Let $p$ be a prime number. We construct a directed graph of $p$ vertices, labeled with integers from $0$ to $p-1$. There is an edge from vertex $x$ to vertex $y$ if and only if $x^2+1\equiv y \pmod{p}$. Let $f(p)$ denotes the length of the longest directed cycle in this graph. Prove that $f(p)$ can attain arbitrarily large values.
2022 Bulgarian Spring Math Competition, Problem 9.1
Let $f(x)$ be a quadratic function with integer coefficients. If we know that $f(0)$, $f(3)$ and $f(4)$ are all different and elements of the set $\{2, 20, 202, 2022\}$, determine all possible values of $f(1)$.
2012 Cono Sur Olympiad, 6
6. Consider a triangle $ABC$ with $1 < \frac{AB}{AC} < \frac{3}{2}$. Let $M$ and $N$, respectively, be variable points of the sides $AB$ and $AC$, different from $A$, such that $\frac{MB}{AC} - \frac{NC}{AB} = 1$. Show that circumcircle of triangle $AMN$ pass through a fixed point different from $A$.
2010 AIME Problems, 10
Find the number of second-degree polynomials $ f(x)$ with integer coefficients and integer zeros for which $ f(0)\equal{}2010$.
2020 Lusophon Mathematical Olympiad, 2
a) Find a pair(s) of integers $(x,y)$ such that:
$y^2=x^3+2017$
b) Prove that there isn't integers $x$ and $y$, with $y$ not divisible by $3$, such that:
$y^2=x^3-2017$
2004 Finnish National High School Mathematics Competition, 1
The equations $x^2 +2ax+b^2 = 0$ and $x^2 +2bx+c^2 = 0$ both have two different real roots.
Determine the number of real roots of the equation $x^2 + 2cx + a^2 = 0.$
1965 AMC 12/AHSME, 24
Given the sequence $ 10^{\frac {1}{11}},10^{\frac {2}{11}},10^{\frac {3}{11}},\ldots,10^{\frac {n}{11}}$, the smallest value of $ n$ such that the product of the first $ n$ members of this sequence exceeds $ 100000$ is:
$ \textbf{(A)}\ 7 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 11$