This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

1991 IberoAmerican, 5

Let $P(x,\, y)=2x^{2}-6xy+5y^{2}$. Let us say an integer number $a$ is a value of $P$ if there exist integer numbers $b$, $c$ such that $P(b,\, c)=a$. a) Find all values of $P$ lying between 1 and 100. b) Show that if $r$ and $s$ are values of $P$, then so is $rs$.

2013 AMC 12/AHSME, 25

Let $f : \mathbb{C} \to \mathbb{C} $ be defined by $ f(z) = z^2 + iz + 1 $. How many complex numbers $z $ are there such that $ \text{Im}(z) > 0 $ and both the real and the imaginary parts of $f(z)$ are integers with absolute value at most $ 10 $? ${ \textbf{(A)} \ 399 \qquad \textbf{(B)} \ 401 \qquad \textbf{(C)} \ 413 \qquad \textbf{(D}} \ 431 \qquad \textbf{(E)} \ 441 $

1987 AIME Problems, 11

Find the largest possible value of $k$ for which $3^{11}$ is expressible as the sum of $k$ consecutive positive integers.

1992 AIME Problems, 8

For any sequence of real numbers $A=(a_1,a_2,a_3,\ldots)$, define $\Delta A$ to be the sequence $(a_2-a_1,a_3-a_2,a_4-a_3,\ldots)$, whose $n^\text{th}$ term is $a_{n+1}-a_n$. Suppose that all of the terms of the sequence $\Delta(\Delta A)$ are $1$, and that $a_{19}=a_{92}=0$. Find $a_1$.

1999 Harvard-MIT Mathematics Tournament, 5

Let $f(x)=x+\cfrac{1}{2x+\cfrac{1}{2x+\cfrac{1}{2x+\cdots}}}$. Find $f(99)f^\prime (99)$.

1993 AIME Problems, 9

Two thousand points are given on a circle. Label one of the points 1. From this point, count 2 points in the clockwise direction and label this point 2. From the point labeled 2, count 3 points in the clockwise direction and label this point 3. (See figure.) Continue this process until the labels $1, 2, 3, \dots, 1993$ are all used. Some of the points on the circle will have more than one label and some points will not have a label. What is the smallest integer that labels the same point as 1993? [asy] int x=101, y=3*floor(x/4); draw(Arc(origin, 1, 360*(y-3)/x, 360*(y+4)/x)); int i; for(i=y-2; i<y+4; i=i+1) { dot(dir(360*i/x)); } label("3", dir(360*(y-2)/x), dir(360*(y-2)/x)); label("2", dir(360*(y+1)/x), dir(360*(y+1)/x)); label("1", dir(360*(y+3)/x), dir(360*(y+3)/x));[/asy]

2019 Ramnicean Hope, 2

Calculate $ \int_1^4 \frac{\ln x}{(1+x)(4+x)} dx . $ [i]Ovidiu Țâțan[/i]

2009 Sharygin Geometry Olympiad, 22

Construct a quadrilateral which is inscribed and circumscribed, given the radii of the respective circles and the angle between the diagonals of quadrilateral.

PEN L Problems, 13

The sequence $\{x_{n}\}_{n \ge 1}$ is defined by \[x_{1}=x_{2}=1, \; x_{n+2}= 14x_{n+1}-x_{n}-4.\] Prove that $x_{n}$ is always a perfect square.

1969 IMO Longlists, 14

$(CZS 3)$ Let $a$ and $b$ be two positive real numbers. If $x$ is a real solution of the equation $x^2 + px + q = 0$ with real coefficients $p$ and $q$ such that $|p| \le a, |q| \le b,$ prove that $|x| \le \frac{1}{2}(a +\sqrt{a^2 + 4b})$ Conversely, if $x$ satisfies the above inequality, prove that there exist real numbers $p$ and $q$ with $|p|\le a, |q|\le b$ such that $x$ is one of the roots of the equation $x^2+px+ q = 0.$

1998 National Olympiad First Round, 16

Tags: quadratic
If $ x^{2} \plus{}y^{2} \plus{}z\equal{}15$, $ x\plus{}y\plus{}z^{2} \equal{}27$ and $ xy\plus{}yz\plus{}zx\equal{}7$, then $\textbf{(A)}\ 3\le \left|x\plus{}y\plus{}z\right|\le 4 \\ \textbf{(B)}\ 5\le \left|x\plus{}y\plus{}z\right|\le 6 \\ \textbf{(C)}\ 7\le \left|x\plus{}y\plus{}z\right|\le 8 \\ \textbf{(D)}\ 9\le \left|x\plus{}y\plus{}z\right|\le 10 \\ \textbf{(E)}\ \text{None}$

2002 AMC 12/AHSME, 6

Tags: quadratic , vieta
Suppose that $ a$ and $ b$ are are nonzero real numbers, and that the equation $ x^2\plus{}ax\plus{}b\equal{}0$ has solutions $ a$ and $ b$. Then the pair $ (a,b)$ is $ \textbf{(A)}\ (\minus{}2,1) \qquad \textbf{(B)}\ (\minus{}1,2) \qquad \textbf{(C)}\ (1,\minus{}2) \qquad \textbf{(D)}\ (2,\minus{}1) \qquad \textbf{(E)}\ (4,4)$

1952 AMC 12/AHSME, 40

In order to draw a graph of $ f(x) \equal{} ax^2 \plus{} bx \plus{} c$, a table of values was constructed. These values of the function for a set of equally spaced increasing values of $ x$ were $ 3844$, $ 3969$, $ 4096$, $ 4227$, $ 4356$, $ 4489$, $ 4624$, and $ 4761$. The one which is incorrect is: $ \textbf{(A)}\ 4096 \qquad\textbf{(B)}\ 4356 \qquad\textbf{(C)}\ 4489 \qquad\textbf{(D)}\ 4761 \qquad\textbf{(E)}\ \text{none of these}$

2007 AIME Problems, 14

Let $f(x)$ be a polynomial with real coefficients such that $f(0) = 1,$ $f(2)+f(3)=125,$ and for all $x$, $f(x)f(2x^{2})=f(2x^{3}+x).$ Find $f(5).$

PEN H Problems, 3

Does there exist a solution to the equation \[x^{2}+y^{2}+z^{2}+u^{2}+v^{2}=xyzuv-65\] in integers with $x, y, z, u, v$ greater than $1998$?

2013 Bundeswettbewerb Mathematik, 4

Two players $A$ and $B$ play the following game taking alternate moves. In each move, a player writes one digit on the blackboard. Each new digit is written either to the right or left of the sequence of digits already written on the blackboard. Suppose that $A$ begins the game and initially the blackboard was empty. $B$ wins the game if ,after some move of $B$, the sequence of digits written in the blackboard represents a perfect square. Prove that $A$ can prevent $B$ from winning.

1962 AMC 12/AHSME, 34

Tags: quadratic
For what real values of $ K$ does $ x \equal{} K^2 (x\minus{}1)(x\minus{}2)$ have real roots? $ \textbf{(A)}\ \text{none} \qquad \textbf{(B)}\ \minus{}2<K<1 \qquad \textbf{(C)}\ \minus{}2 \sqrt{2} < K < 2 \sqrt{2} \qquad \textbf{(D)}\ K>1 \text{ or } K<\minus{}2 \qquad \textbf{(E)}\ \text{all}$

2007 Putnam, 4

A [i]repunit[/i] is a positive integer whose digits in base $ 10$ are all ones. Find all polynomials $ f$ with real coefficients such that if $ n$ is a repunit, then so is $ f(n).$

2005 Korea - Final Round, 2

Let $(a_{n})_{n=1}^{\infty}$ be a sequence of positive real numbers and let $\alpha_{n}$ be the arithmetic mean of $a_{1},..., a_{n}$ . Prove that for all positive integers $N$ , \[\sum_{n=1}^{N}\alpha_{n}^{2}\leq 4\sum_{n=1}^{N}a_{n}^{2}. \]

2011 Brazil Team Selection Test, 1

Let $a,b,c$ be positive integers. Prove that it is impossible to have all of the three numbers $a^2+b+c,b^2+c+a,c^2+a+b$ to be perfect squares.

PEN A Problems, 17

Let $m$ and $n$ be natural numbers such that \[A=\frac{(m+3)^{n}+1}{3m}\] is an integer. Prove that $A$ is odd.

2011 ELMO Problems, 3

Determine whether there exist two reals $x,y$ and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2}=xa_{n+1}+ya_n$ for all $n\ge0$ and for every positive real number $r$, there exist positive integers $i,j$ such that $|a_i|<r<|a_j|$. [i]Alex Zhu.[/i]

1998 Brazil National Olympiad, 1

Two players play a game as follows. The first player chooses two non-zero integers A and B. The second player forms a quadratic with A, B and 1998 as coefficients (in any order). The first player wins iff the equation has two distinct rational roots. Show that the first player can always win.

2014 USA Team Selection Test, 2

Let $a_1,a_2,a_3,\ldots$ be a sequence of integers, with the property that every consecutive group of $a_i$'s averages to a perfect square. More precisely, for every positive integers $n$ and $k$, the quantity \[\frac{a_n+a_{n+1}+\cdots+a_{n+k-1}}{k}\] is always the square of an integer. Prove that the sequence must be constant (all $a_i$ are equal to the same perfect square). [i]Evan O'Dorney and Victor Wang[/i]

PEN A Problems, 4

If $a, b, c$ are positive integers such that \[0 < a^{2}+b^{2}-abc \le c,\] show that $a^{2}+b^{2}-abc$ is a perfect square.