Found problems: 248
2008 Bulgaria Team Selection Test, 2
In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.
2008 Sharygin Geometry Olympiad, 7
(F.Nilov) Two arcs with equal angular measure are constructed on the medians $ AA'$ and $ BB'$ of triangle $ ABC$ towards vertex $ C$. Prove that the common chord of the respective circles passes through $ C$.
2007 Moldova Team Selection Test, 3
Let $M, N$ be points inside the angle $\angle BAC$ usch that $\angle MAB\equiv \angle NAC$. If $M_{1}, M_{2}$ and $N_{1}, N_{2}$ are the projections of $M$ and $N$ on $AB, AC$ respectively then prove that $M, N$ and $P$ the intersection of $M_{1}N_{2}$ with $N_{1}M_{2}$ are collinear.
LMT Team Rounds 2010-20, 2017 Radical
Let $P$ be a point and $\omega$ be a circle with center $O$ and radius $r$ . We define the power of the point $P$ with respect to the circle $\omega$ to be $OP^2 - r^2$ , and we denote this by pow $(P, \omega)$. We define the radical axis of two circles $\omega_1$ and $\omega_2$ to be the locus of all points P such that pow $(P,\omega_1) =$ pow $(P,\omega_2)$. It turns out that the pairwise radical axes of three circles are either concurrent or pairwise parallel. The concurrence point is referred to as the radical center of the three circles.
In $\vartriangle ABC$, let $I$ be the incenter, $\Gamma$ be the circumcircle, and $O$ be the circumcenter. Let $A_1,B_1,C_1$ be the point of tangency of the incircle of $\vartriangle ABC$ with side $BC,CA, AB$, respectively. Let $X_1,X_2 \in \Gamma$ such that $X_1,B_1,C_1,X_2$ are collinear in this order. Let $M_A$ be the midpoint of $BC$, and define $\omega_A$ as the circumcircle of $\vartriangle X_1X_2M_A$. Define $\omega_B$ ,$\omega_C$ analogously. The goal of this problem is to show that the radical center of $\omega_A$, $\omega_B$, $\omega_C$ lies on line $OI$.
(a) Let$ A'_1$ denote the intersection of $B_1C_1$ and $BC$. Show that $\frac{A_1B}{A_1C}=\frac{A'_1B}{A'_1C}$.
(b) Prove that $A_1$ lies on $\omega_A$.
(c) Prove that $A_1$ lies on the radical axis of $\omega_B$ and $\omega_C$ .
(d) Prove that the radical axis of $\omega_B$ and $\omega_C$ is perpendicular to $B_1C_1$.
(e) Prove that the radical center of $\omega_A$, $\omega_B$, $\omega_C$ is the orthocenter of $\vartriangle A_1B_1C_1$.
(f ) Conclude that the radical center of $\omega_A$, $\omega_B$, $\omega_C$ , $O$, and $I$ are collinear.
PS. You had better use hide for answers.
2014 Contests, 3
Let $\triangle ABC$ be an acute triangle and $AD$ the bisector of the angle $\angle BAC$ with $D\in(BC)$. Let $E$ and $F$ denote feet of perpendiculars from $D$ to $AB$ and $AC$ respectively. If $BF\cap CE=K$ and $\odot AKE\cap BF=L$ prove that $DL\perp BF$.
2012 Morocco TST, 4
Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.
[i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]
1993 India National Olympiad, 1
The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ intersect at $P$. Let $O$ be the circumcenter of triangle $APB$ and $H$ be the orthocenter of triangle $CPD$. Show that the points $H,P,O$ are collinear.
2008 Iran MO (2nd Round), 2
Let $I_a$ be the $A$-excenter of $\Delta ABC$ and the $A$-excircle of $\Delta ABC$ be tangent to the lines $AB,AC$ at $B',C'$, respectively. $ I_aB,I_aC$ meet $B'C'$ at $P,Q$, respectively. $M$ is the meet point of $BQ,CP$. Prove that the length of the perpendicular from $M$ to $BC$ is equal to $r$ where $r$ is the radius of incircle of $\Delta ABC$.
2005 QEDMO 1st, 9 (G3)
Let $ABC$ be a triangle with $AB\neq CB$. Let $C^{\prime}$ be a point on the ray $[AB$ such that $AC^{\prime}=CB$. Let $A^{\prime}$ be a point on the ray $[CB$ such that $CA^{\prime}=AB$. Let the circumcircles of triangles $ABA^{\prime}$ and $CBC^{\prime}$ intersect at a point $Q$ (apart from $B$). Prove that the line $BQ$ bisects the segment $CA$.
Darij
2007 Bundeswettbewerb Mathematik, 3
In triangle $ ABC$ points $ E$ and $ F$ lie on sides $ AC$ and $ BC$ such that segments $ AE$ and $ BF$ have equal length, and circles formed by $ A,C,F$ and by $ B,C,E,$ respectively, intersect at point $ C$ and another point $ D.$ Prove that that the line $ CD$ bisects $ \angle ACB.$
2005 Silk Road, 3
Assume $A,B,C$ are three collinear points that $B \in [AC]$. Suppose $AA'$ and $BB'$
are to parrallel lines that $A'$, $B'$ and $C$ are not collinear. Suppose $O_1$ is circumcenter of circle passing through $A$, $A'$ and $C$. Also $O_2$ is circumcenter of circle passing through $B$, $B'$ and $C$. If area of $A'CB'$ is equal to area of $O_1CO_2$, then find all possible values for $\angle CAA'$
2007 CHKMO, 3
A convex quadrilateral $ABCD$ with $AC \neq BD$ is inscribed in a circle with center $O$. Let $E$ be the intersection of diagonals $AC$ and $BD$. If $P$ is a point inside $ABCD$ such that $\angle PAB+\angle PCB=\angle PBC+\angle PDC=90^\circ$, prove that $O$, $P$ and $E$ are collinear.
2012 Serbia Team Selection Test, 3
Let $P$ and $Q$ be points inside triangle $ABC$ satisfying $\angle PAC=\angle QAB$ and $\angle PBC=\angle QBA$.
a) Prove that feet of perpendiculars from $P$ and $Q$ on the sides of triangle $ABC$ are concyclic.
b) Let $D$ and $E$ be feet of perpendiculars from $P$ on the lines $BC$ and $AC$ and $F$ foot of perpendicular from $Q$ on $AB$. Let $M$ be intersection point of $DE$ and $AB$. Prove that $MP\bot CF$.
2024 Turkey Olympic Revenge, 4
Let the circumcircle of a triangle $ABC$ be $\Gamma$. The tangents to $\Gamma$ at $B,C$ meet at point $E$. For a point $F$ on line $BC$ which is not on the segment $BC$, let the midpoint of $EF$ be $G$. Lines $GB,GC$ meet $\Gamma$ again at points $I,H$ respectively. Let $M$ be the midpoint of $BC$. Prove that the points $F,I,H,M$ lie on a circle.
Proposed by [i]Mehmet Can Baştemir[/i]
2019 India IMO Training Camp, P1
Let the points $O$ and $H$ be the circumcenter and orthocenter of an acute angled triangle $ABC.$ Let $D$ be the midpoint of $BC.$ Let $E$ be the point on the angle bisector of $\angle BAC$ such that $AE\perp HE.$ Let $F$ be the point such that $AEHF$ is a rectangle. Prove that $D,E,F$ are collinear.
2021 Iran RMM TST, 2
Let $ABC$ be a triangle with $AB \neq AC$ and with incenter $I$. Let $M$ be the midpoint of $BC$, and let $L$ be the midpoint of the circular arc $BAC$. Lines through $M$ parallel to $BI,CI$ meet $AB,AC$ at $E$ and $F$, respectively, and meet $LB$ and $LC$ at $P$ and $Q$, respectively. Show that $I$ lies on the radical axis of the circumcircles of triangles $EMF$ and $PMQ$.
Proposed by [i]Andrew Wu[/i]
2010 Contests, 1
Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.
2006 Switzerland Team Selection Test, 2
Let $D$ be inside $\triangle ABC$ and $E$ on $AD$ different to $D$. Let $\omega_1$ and $\omega_2$ be the circumscribed circles of $\triangle BDE$ and $\triangle CDE$ respectively. $\omega_1$ and $\omega_2$ intersect $BC$ in the interior points $F$ and $G$ respectively. Let $X$ be the intersection between $DG$ and $AB$ and $Y$ the intersection between $DF$ and $AC$. Show that $XY$ is $\|$ to $BC$.
2014 Romania Team Selection Test, 1
Let $ABC$ be a triangle, let ${A}'$, ${B}'$, ${C}'$ be the orthogonal projections of the vertices $A$ ,$B$ ,$C$ on the lines $BC$, $CA$ and $AB$, respectively, and let $X$ be a point on the line $A{A}'$.Let $\gamma_{B}$ be the circle through $B$ and $X$, centred on the line $BC$, and let $\gamma_{C}$ be the circle through $C$ and $X$, centred on the line $BC$.The circle $\gamma_{B}$ meets the lines $AB$ and $B{B}'$ again at $M$ and ${M}'$, respectively, and the circle $\gamma_{C}$ meets the lines $AC$ and $C{C}'$ again at $N$ and ${N}'$, respectively.Show that the points $M$, ${M}'$, $N$ and ${N}'$ are collinear.
2008 Finnish National High School Mathematics Competition, 2
The incentre of the triangle $ABC$ is $I.$ The lines $AI, BI$ and $CI$ meet the circumcircle of the triangle $ABC$ also at points $D, E$ and $F,$ respectively.
Prove that $AD$ and $EF$ are perpendicular.
2008 Mongolia Team Selection Test, 3
Let $ \Omega$ is circle with radius $ R$ and center $ O$. Let $ \omega$ is a circle inside of the $ \Omega$ with center $ I$ radius $ r$. $ X$ is variable point of $ \omega$ and tangent line of $ \omega$ pass through $ X$ intersect the circle $ \Omega$ at points $ A,B$. A line pass through $ X$ perpendicular with $ AI$ intersect $ \omega$ at $ Y$ distinct with $ X$.Let point $ C$ is symmetric to the point $ I$ with respect to the line $ XY$.Find the locus of circumcenter of triangle $ ABC$ when $ X$ varies on $ \omega$
2010 China Team Selection Test, 1
Let $\omega$ be a semicircle and $AB$ its diameter. $\omega_1$ and $\omega_2$ are two different circles, both tangent to $\omega$ and to $AB$, and $\omega_1$ is also tangent to $\omega_2$. Let $P,Q$ be the tangent points of $\omega_1$ and $\omega_2$ to $AB$ respectively, and $P$ is between $A$ and $Q$. Let $C$ be the tangent point of $\omega_1$ and $\omega$. Find $\tan\angle ACQ$.
2001 Vietnam National Olympiad, 1
A circle center $O$ meets a circle center $O'$ at $A$ and $B.$ The line $TT'$ touches the first circle at $T$ and the second at $T'$. The perpendiculars from $T$ and $T'$ meet the line $OO'$ at $S$ and $S'$. The ray $AS$ meets the first circle again at $R$, and the ray $AS'$ meets the second circle again at $R'$. Show that $R, B$ and $R'$ are collinear.
2000 Iran MO (3rd Round), 2
Isosceles triangles $A_3A_1O_2$ and $A_1A_2O_3$ are constructed on the sides of
a triangle $A_1A_2A_3$ as the bases, outside the triangle. Let $O_1$ be a point
outside $\Delta A_1A_2A_3$ such that
$\angle O_1A_3A_2 =\frac 12\angle A_1O_3A_2$ and $\angle O_1A_2A_3 =\frac 12\angle A_1O_2A_3$.
Prove that $A_1O_1\perp O_2O_3$, and if $T$ is the projection of $O_1$ onto $A_2A_3$,
then $\frac{A_1O_1}{O_2O_3} = 2\frac{O_1T}{A_2A_3}$.
2014 Kurschak Competition, 2
We are given an acute triangle $ABC$, and inside it a point $P$, which is not on any of the heights $AA_1$, $BB_1$, $CC_1$. The rays $AP$, $BP$, $CP$ intersect the circumcircle of $ABC$ at points $A_2$, $B_2$, $C_2$. Prove that the circles $AA_1A_2$, $BB_1B_2$ and $CC_1C_2$ are concurrent.