This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

2002 Argentina National Olympiad, 3

In a circumference $\Gamma$ a chord $PQ$ is considered such that the segment that joins the midpoint of the smallest arc $PQ$ and the midpoint of the segment $PQ$ measures $1$. Let $\Gamma_1, \Gamma_2$ and $\Gamma_3$ be three tangent circumferences to the chord $PQ$ that are in the same half plane than the center of $\Gamma$ with respect to the line $PQ$. Furthermore, $\Gamma_1$ and $\Gamma_3$ are internally tangent to $\Gamma$ and externally tangent to$ \Gamma_2$, and the centers of $\Gamma_1$ and $\Gamma_3$ are on different halfplanes with respect to the line determined by the centers of $\Gamma$ and $\Gamma_2$. If the sum of the radii of $\Gamma_1, \Gamma_2$ and $\Gamma_3$ is equal to the radius of $\Gamma$, calculate the radius of $\Gamma_2$.

1999 ITAMO, 3

Let $r_1,r_2,r$, with $r_1 < r_2 < r$, be the radii of three circles $\Gamma_1,\Gamma_2,\Gamma$, respectively. The circles $\Gamma_1,\Gamma_2$ are internally tangent to $\Gamma$ at two distinct points $A,B$ and intersect in two distinct points. Prove that the segment $AB$ contains an intersection point of $\Gamma_1$ and $\Gamma_2$ if and only if $r_1 +r_2 = r$.

2014 Poland - Second Round, 2.

Tags: radii , geometry
Distinct points $A$, $B$ and $C$ lie on a line in this order. Point $D$ lies on the perpendicular bisector of the segment $BC$. Denote by $M$ the midpoint of the segment $BC$. Let $r$ be the radius of the incircle of the triangle $ABD$ and let $R$ be the radius of the circle with center lying outside the triangle $ACD$, tangent to $CD$, $AC$ and $AD$. Prove that $DM=r+R$.

2014 Contests, 2.

Tags: geometry , radii
Distinct points $A$, $B$ and $C$ lie on a line in this order. Point $D$ lies on the perpendicular bisector of the segment $BC$. Denote by $M$ the midpoint of the segment $BC$. Let $r$ be the radius of the incircle of the triangle $ABD$ and let $R$ be the radius of the circle with center lying outside the triangle $ACD$, tangent to $CD$, $AC$ and $AD$. Prove that $DM=r+R$.

2007 Sharygin Geometry Olympiad, 1

Given a circumscribed quadrilateral $ABCD$. Prove that its inradius is smaller than the sum of the inradii of triangles $ABC$ and $ACD$.

2001 239 Open Mathematical Olympiad, 7

The quadrangle $ ABCD $ contains two circles of radii $ R_1 $ and $ R_2 $ tangent externally. The first circle touches the sides of $ DA $,$ AB $ and $ BC $, moreover, the sides of $ AB $ at the point $ E $. The second circle touches sides $ BC $, $ CD $ and $ DA $, and sides $ CD $ at $ F $. Diagonals of the quadrangle intersect at $ O $. Prove that $ OE + OF \leq 2 (R_1 + R_2) $. (F. Bakharev, S. Berlov)

2015 Thailand Mathematical Olympiad, 7

Let $A, B, C$ be centers of three circles that are mutually tangent externally, let $r_A, r_B, r_C$ be the radii of the circles, respectively. Let $r$ be the radius of the incircle of $\vartriangle ABC$. Prove that $$r^2 \le \frac19 (r_A^2 + r_B^2+r_C^2)$$ and identify, with justification, one case where the equality is attained.

Ukraine Correspondence MO - geometry, 2006.10

Let $ABC$ be an isosceles triangle ($AB=AC$). An arbitrary point $M$ is chosen on the extension of the $BC$ beyond point $B$. Prove that the sum of the radius of the circle inscribed in the triangle $AM​​B$ and the radius of the circle tangent to the side $AC$ and the extensions of the sides $AM, CM$ of the triangle $AMC$ does not depend on the choice of point $M$.

Estonia Open Senior - geometry, 2004.1.3

a) Does there exist a convex quadrangle $ABCD$ satisfying the following conditions (1) $ABCD$ is not cyclic; (2) the sides $AB, BC, CD$ and $DA$ have pairwise different lengths; (3) the circumradii of the triangles $ABC, ADC, BAD$ and $BCD$ are equal? b) Does there exist such a non-convex quadrangle?