This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

1991 Turkey Team Selection Test, 1

Tags: ratio , geometry
Let $C',B',A'$ be points respectively on sides $AB,AC,BC$ of $\triangle ABC$ satisfying $ \tfrac{AB'}{B'C}= \tfrac{BC'}{C'A}=\tfrac{CA'}{A'B}=k$. Prove that the ratio of the area of the triangle formed by the lines $AA',BB',CC'$ over the area of $\triangle ABC$ is $\tfrac{(k-1)^2}{(k^2+k+1)}$.

2013 ELMO Shortlist, 10

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2007 China Girls Math Olympiad, 2

Let $ ABC$ be an acute triangle. Points $ D$, $ E$, and $ F$ lie on segments $ BC$, $ CA$, and $ AB$, respectively, and each of the three segments $ AD$, $ BE$, and $ CF$ contains the circumcenter of $ ABC$. Prove that if any two of the ratios $ \frac{BD}{DC}$, $ \frac{CE}{EA}$, $ \frac{AF}{FB}$, $ \frac{BF}{FA}$, $ \frac{AE}{EC}$, $ \frac{CD}{DB}$ are integers, then triangle $ ABC$ is isosceles.

2005 Dutch Mathematical Olympiad, 4

Let $ABCD$ be a quadrilateral with $AB \parallel CD$, $AB > CD$. Prove that the line passing through $AC \cap BD$ and $AD \cap BC$ passes through the midpoints of $AB$ and $CD$.

2000 Moldova National Olympiad, Problem 4

Tags: geometry , ratio
Let $A_1A_2\ldots A_n$ be a regular hexagon and $M$ be a point on the shorter arc $A_1A_n$ of its circumcircle. Prove that the value of $$\frac{A_2M+A_3M+\ldots+A_{n-1}M}{A_1M+A_nM}$$is constant and find this value.

1990 Spain Mathematical Olympiad, 5

On the sides $BC,CA$ and $AB$ of a triangle $ABC$ of area $S$ are taken points $A' ,B' ,C'$ respectively such that $AC' /AB = BA' /BC = CB' /CA = p$, where $0 < p < 1$ is variable. (a) Find the area of triangle $A' B' C'$ in terms of $ p$. (b) Find the value of $p$ which minimizes this area. (c) Find the locus of the intersection point $P$ of the lines through $A' $ and $C'$ parallel to $AB$ and $AC$ respectively.

2012 Sharygin Geometry Olympiad, 14

Tags: ratio , geometry
In a convex quadrilateral $ABCD$ suppose $AC \cap BD = O$ and $M$ is the midpoint of $BC$. Let $MO \cap AD = E$. Prove that $\frac{AE}{ED} = \frac{S_{\triangle ABO}}{S_{\triangle CDO}}$.

2017 Novosibirsk Oral Olympiad in Geometry, 6

In trapezoid $ABCD$, diagonal $AC$ is the bisector of angle $A$. Point $K$ is the midpoint of diagonal $AC$. It is known that $DC = DK$. Find the ratio of the bases $AD: BC$.

2010 AIME Problems, 9

Let $ ABCDEF$ be a regular hexagon. Let $ G$, $ H$, $ I$, $ J$, $ K$, and $ L$ be the midpoints of sides $ AB$, $ BC$, $ CD$, $ DE$, $ EF$, and $ AF$, respectively. The segments $ AH$, $ BI$, $ CJ$, $ DK$, $ EL$, and $ FG$ bound a smaller regular hexagon. Let the ratio of the area of the smaller hexagon to the area of $ ABCDEF$ be expressed as a fraction $ \frac {m}{n}$ where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.

1978 AMC 12/AHSME, 30

In a tennis tournament, $n$ women and $2n$ men play, and each player plays exactly one match with every other player. If there are no ties and the ratio of the number of matches won by women to the number of matches won by men is $7/5$, then $n$ equals $\textbf{(A) }2\qquad\textbf{(B) }4\qquad\textbf{(C) }6\qquad\textbf{(D) }7\qquad \textbf{(E) }\text{none of these}$

2009 Harvard-MIT Mathematics Tournament, 4

Tags: ratio , geometry
A [i]kite[/i] is a quadrilateral whose diagonals are perpendicular. Let kite $ABCD$ be such that $\angle B = \angle D = 90^\circ$. Let $M$ and $N$ be the points of tangency of the incircle of $ABCD$ to $AB$ and $BC$ respectively. Let $\omega$ be the circle centered at $C$ and tangent to $AB$ and $AD$. Construct another kite $AB^\prime C^\prime D^\prime$ that is similar to $ABCD$ and whose incircle is $\omega$. Let $N^\prime$ be the point of tangency of $B^\prime C^\prime$ to $\omega$. If $MN^\prime \parallel AC$, then what is the ratio of $AB:BC$?

1964 Putnam, A6

Tags: geometry , ratio
Let $S$ be a finite subset of a straight line. Say that $S$ has the [i]repeated distance property [/i] if every value of the distance between two points of $S$ (except the longest) occurs at least twice. Show that if $S$ has the [i]repeated distance property [/i] then the ratio of any two distances between two points of $S$ is rational.

Ukrainian TYM Qualifying - geometry, I.7

Given a natural number $n> 3$. On the plane are considered convex $n$ - gons $F_1$ and $F_2$ such that on each side of $F_1$ lies one vertex of $F_2$ and no two vertices $F_1$ and $F_2$ coincide. For each $n$, determine the limits of the ratio of the areas of the polygons $F_1$ and $F_2$. For each $n$, determine the range of the areas of the polygons $F_1$ and $F_2$, if $F_1$ is a regular $n$-gon. Determine the set of values of this value for other partial cases of the polygon $F_1$.

2023 ISI Entrance UGB, 3

In $\triangle ABC$, consider points $D$ and $E$ on $AC$ and $AB$, respectively, and assume that they do not coincide with any of the vertices $A$, $B$, $C$. If the segments $BD$ and $CE$ intersect at $F$, consider areas $w$, $x$, $y$, $z$ of the quadrilateral $AEFD$ and the triangles $BEF$, $BFC$, $CDF$, respectively. [list=a] [*] Prove that $y^2 > xz$. [*] Determine $w$ in terms of $x$, $y$, $z$. [/list] [asy] import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(12); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -2.8465032978885407, xmax = 9.445649196374966, ymin = -1.7618066305534972, ymax = 4.389732795464592; /* image dimensions */ draw((3.8295013012181283,2.816337276198864)--(-0.7368327629589799,-0.5920813291311117)--(5.672613975760373,-0.636902634996282)--cycle, linewidth(0.5)); /* draw figures */ draw((3.8295013012181283,2.816337276198864)--(-0.7368327629589799,-0.5920813291311117), linewidth(0.5)); draw((-0.7368327629589799,-0.5920813291311117)--(5.672613975760373,-0.636902634996282), linewidth(0.5)); draw((5.672613975760373,-0.636902634996282)--(3.8295013012181283,2.816337276198864), linewidth(0.5)); draw((-0.7368327629589799,-0.5920813291311117)--(4.569287648059735,1.430279997142299), linewidth(0.5)); draw((5.672613975760373,-0.636902634996282)--(1.8844000180622977,1.3644681598392678), linewidth(0.5)); label("$y$",(2.74779188172294,0.23771684184669772),SE*labelscalefactor); label("$w$",(3.2941097703568736,1.8657441499758196),SE*labelscalefactor); label("$x$",(1.6660824622277512,1.0025618859342047),SE*labelscalefactor); label("$z$",(4.288408327670633,0.8168138037986672),SE*labelscalefactor); /* dots and labels */ dot((3.8295013012181283,2.816337276198864),dotstyle); label("$A$", (3.8732067323088435,2.925600853925651), NE * labelscalefactor); dot((-0.7368327629589799,-0.5920813291311117),dotstyle); label("$B$", (-1.1,-0.7565817154670613), NE * labelscalefactor); dot((5.672613975760373,-0.636902634996282),dotstyle); label("$C$", (5.763466626982254,-0.7784344310124186), NE * labelscalefactor); dot((4.569287648059735,1.430279997142299),dotstyle); label("$D$", (4.692683565259744,1.5051743434774234), NE * labelscalefactor); dot((1.8844000180622977,1.3644681598392678),dotstyle); label("$E$", (1.775346039954538,1.4942479857047448), NE * labelscalefactor); dot((2.937230516274804,0.8082418657164665),linewidth(4.pt) + dotstyle); label("$F$", (2.889834532767763,0.954), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]

2014 AMC 10, 5

Tags: ratio
Doug constructs a square window using $8$ equal-size panes of glass, as shown. The ratio of the height to width for each pane is $5:2$, and the borders around and between the panes are $2$ inches wide. In inches, what is the side length o the square window? [asy] fill((0,0)--(25,0)--(25,25)--(0,25)--cycle,grey); for(int i = 0; i < 4; ++i){ for(int j = 0; j < 2; ++j){ fill((6*i+2,11*j+3)--(6*i+5,11*j+3)--(6*i+5,11*j+11)--(6*i+2,11*j+11)--cycle,white); } }[/asy] $\textbf{(A) }26\qquad\textbf{(B) }28\qquad\textbf{(C) }30\qquad\textbf{(D) }32\qquad\textbf{(E) }34$

Indonesia Regional MO OSP SMA - geometry, 2004.2

Tags: geometry , ratio , cevian
Triangle $ABC$ is given. The points $D, E$, and $F$ are located on the sides $BC, CA$ and $AB$ respectively so that the lines $AD, BE$ and $CF$ intersect at point $O$. Prove that $\frac{AO}{AD} + \frac{BO}{BE} + \frac{CO}{ CF}=2$

2003 China Team Selection Test, 2

In triangle $ABC$, the medians and bisectors corresponding to sides $BC$, $CA$, $AB$ are $m_a$, $m_b$, $m_c$ and $w_a$, $w_b$, $w_c$ respectively. $P=w_a \cap m_b$, $Q=w_b \cap m_c$, $R=w_c \cap m_a$. Denote the areas of triangle $ABC$ and $PQR$ by $F_1$ and $F_2$ respectively. Find the least positive constant $m$ such that $\frac{F_1}{F_2}<m$ holds for any $\triangle{ABC}$.

2006 China Team Selection Test, 1

$ABCD$ is a trapezoid with $AB || CD$. There are two circles $\omega_1$ and $\omega_2$ is the trapezoid such that $\omega_1$ is tangent to $DA$, $AB$, $BC$ and $\omega_2$ is tangent to $BC$, $CD$, $DA$. Let $l_1$ be a line passing through $A$ and tangent to $\omega_2$(other than $AD$), Let $l_2$ be a line passing through $C$ and tangent to $\omega_1$ (other than $CB$). Prove that $l_1 || l_2$.

2010 AIME Problems, 15

In triangle $ ABC$, $ AC \equal{} 13, BC \equal{} 14,$ and $ AB\equal{}15$. Points $ M$ and $ D$ lie on $ AC$ with $ AM\equal{}MC$ and $ \angle ABD \equal{} \angle DBC$. Points $ N$ and $ E$ lie on $ AB$ with $ AN\equal{}NB$ and $ \angle ACE \equal{} \angle ECB$. Let $ P$ be the point, other than $ A$, of intersection of the circumcircles of $ \triangle AMN$ and $ \triangle ADE$. Ray $ AP$ meets $ BC$ at $ Q$. The ratio $ \frac{BQ}{CQ}$ can be written in the form $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\minus{}n$.

2007 Sharygin Geometry Olympiad, 11

Tags: ratio , geometry , distance
A boy and his father are standing on a seashore. If the boy stands on his tiptoes, his eyes are at a height of $1$ m above sea-level, and if he seats on father’s shoulders, they are at a height of $2$ m. What is the ratio of distances visible for him in two eases? (Find the answer to $0,1$, assuming that the radius of Earth equals $6000$ km.)

1998 Moldova Team Selection Test, 11

Let $A,B,C$ be nodes of the lattice $Z\times Z$ such that inside the triangle $ABC$ lies a unique node $P$ of the lattice. Denote $E = AP \cap BC$. Determine max $\frac{AP}{PE}$ , over all such configurations.

2017 Sharygin Geometry Olympiad, 2

Tags: ratio , geometry
Let $I$ be the incenter of a triangle $ABC$, $M$ be the midpoint of $AC$, and $W$ be the midpoint of arc $AB$ of the circumcircle not containing $C$. It is known that $\angle AIM = 90^\circ$. Find the ratio $CI:IW$.

Denmark (Mohr) - geometry, 2013.5

The angle bisector of $A$ in triangle $ABC$ intersects $BC$ in the point $D$. The point $E$ lies on the side $AC$, and the lines $AD$ and $BE$ intersect in the point $F$. Furthermore, $\frac{|AF|}{|F D|}= 3$ and $\frac{|BF|}{|F E|}=\frac{5}{3}$. Prove that $|AB| = |AC|$. [img]https://1.bp.blogspot.com/-evofDCeJWPY/XzT9dmxXzVI/AAAAAAAAMVY/ZN87X3Cg8iMiULwvMhgFrXbdd_f1f-JWwCLcBGAsYHQ/s0/2013%2BMohr%2Bp5.png[/img]

2003 China Team Selection Test, 3

(1) $D$ is an arbitary point in $\triangle{ABC}$. Prove that: \[ \frac{BC}{\min{AD,BD,CD}} \geq \{ \begin{array}{c} \displaystyle 2\sin{A}, \ \angle{A}< 90^o \\ \\ 2, \ \angle{A} \geq 90^o \end{array} \] (2)$E$ is an arbitary point in convex quadrilateral $ABCD$. Denote $k$ the ratio of the largest and least distances of any two points among $A$, $B$, $C$, $D$, $E$. Prove that $k \geq 2\sin{70^o}$. Can equality be achieved?

2003 AIME Problems, 8

In an increasing sequence of four positive integers, the first three terms form an arithmetic progression, the last three terms form a geometric progression, and the first and fourth terms differ by 30. Find the sum of the four terms.