Found problems: 884
2021 Science ON all problems, 1
Consider a function $f:\mathbb{R}\rightarrow \mathbb{R}$. For $x\in \mathbb{R}$ we say that $f$ is [i]increasing in $x$[/i] if there exists $\epsilon_x > 0$ such that $f(x)\geq{f(a)}$, $\forall a\in (x-\epsilon_x,x)$ and $f(x)\leq f(b)$, $\forall b\in (x,x+\epsilon_x)$.
$\textbf{(a)}$ Prove that if $f$ is increasing in $x$, $\forall x\in \mathbb{R}$ then $f$ is increasing over $\mathbb{R}$.
$\textbf{(b)}$ We say that $f$ is [i]increasing to the left[/i] in $x$ if there exists $\epsilon_x > 0$ such that $f(x)\geq f(a) $, $ \forall a \in (x-\epsilon_x,x)$. Provide an example of a function $f: [0,1]\rightarrow \mathbb{R}$ for which there exists an infinite set $M \subset (0,1)$ such that $f$ is increasing to the left in every point of $M$, yet $f$ is increasing over no proper subinterval of $[0,1]$.
1971 Miklós Schweitzer, 5
Let $ \lambda_1 \leq \lambda_2 \leq...$ be a positive sequence and let $ K$ be a constant such that \[ \sum_{k=1}^{n-1} \lambda^2_k < K \lambda^2_n \;(n=1,2,...).\] Prove that there exists a constant $ K'$ such that \[ \sum_{k=1}^{n-1} \lambda_k < K' \lambda_n \;(n=1,2,...).\]
[i]L. Leindler[/i]
1982 Miklós Schweitzer, 5
Find a perfect set $ H \subset [0,1]$ of positive measure and a continuous function $ f$ defined on $ [0,1]$ such that for any twice differentiable function $ g$ defined on $ [0,1]$, the set $ \{ x \in H : \;f(x)\equal{}g(x)\ \}$ is finite.
[i]M. Laczkovich[/i]
2006 Romania National Olympiad, 4
Let $f: [0,\infty)\to\mathbb R$ be a function such that for any $x>0$ the sequence $\{f(nx)\}_{n\geq 0}$ is increasing.
a) If the function is also continuous on $[0,1]$ is it true that $f$ is increasing?
b) The same question if the function is continuous on $\mathbb Q \cap [0, \infty)$.
2009 Harvard-MIT Mathematics Tournament, 5
Compute \[\lim_{h\to 0}\dfrac{\sin(\frac{\pi}{3}+4h)-4\sin(\frac{\pi}{3}+3h)+6\sin(\frac{\pi}{3}+2h)-4\sin(\frac{\pi}{3}+h)+\sin(\frac{\pi}{3})}{h^4}.\]
2020 Jozsef Wildt International Math Competition, W2
Let $\left(a_n\right)_{n\geq1}$ be a sequence of nonnegative real numbers which converges to $a \in \mathbb{R}$.
[list=1]
[*]Calculate$$\lim \limits_{n\to \infty}\sqrt[n]{\int \limits_0^1 \left(1+a_nx^n \right)^ndx}$$
[*]Calculate$$\lim \limits_{n\to \infty}\sqrt[n]{\int \limits_0^1 \left(1+\frac{a_1x+a_3x^3+\cdots+a_{2n-1}x^{2n-1}}{n} \right)^ndx}$$
[/list]
2014 Contests, 4
Let $a>1$ be a positive integer and $f\in \mathbb{Z}[x]$ with positive leading coefficient. Let $S$ be the set of integers $n$ such that
\[n \mid a^{f(n)}-1.\]
Prove that $S$ has density $0$; that is, prove that $\lim_{n\rightarrow \infty} \frac{|S\cap \{1,...,n\}|}{n}=0$.
2012 Online Math Open Problems, 22
Let $c_1,c_2,\ldots,c_{6030}$ be 6030 real numbers. Suppose that for any 6030 real numbers $a_1,a_2,\ldots,a_{6030}$, there exist 6030 real numbers $\{b_1,b_2,\ldots,b_{6030}\}$ such that \[a_n = \sum_{k=1}^{n} b_{\gcd(k,n)}\] and \[b_n = \sum_{d\mid n} c_d a_{n/d}\] for $n=1,2,\ldots,6030$. Find $c_{6030}$.
[i]Victor Wang.[/i]
2007 Iran MO (3rd Round), 4
a) Let $ n_{1},n_{2},\dots$ be a sequence of natural number such that $ n_{i}\geq2$ and $ \epsilon_{1},\epsilon_{2},\dots$ be a sequence such that $ \epsilon_{i}\in\{1,2\}$. Prove that the sequence: \[ \sqrt[n_{1}]{\epsilon_{1}\plus{}\sqrt[n_{2}]{\epsilon_{2}\plus{}\dots\plus{}\sqrt[n_{k}]{\epsilon_{k}}}}\]is convergent and its limit is in $ (1,2]$. Define $ \sqrt[n_{1}]{\epsilon_{1}\plus{}\sqrt[n_{2}]{\epsilon_{2}\plus{}\dots}}$ to be this limit.
b) Prove that for each $ x\in(1,2]$ there exist sequences $ n_{1},n_{2},\dots\in\mathbb N$ and $ n_{i}\geq2$ and $ \epsilon_{1},\epsilon_{2},\dots$, such that $ n_{i}\geq2$ and $ \epsilon_{i}\in\{1,2\}$, and $ x\equal{}\sqrt[n_{1}]{\epsilon_{1}\plus{}\sqrt[n_{2}]{\epsilon_{2}\plus{}\dots}}$
2015 Miklos Schweitzer, 1
Let $K$ be a closed subset of the closed unit ball in $\mathbb{R}^3$. Suppose there exists a family of chords $\Omega$ of the unit sphere $S^2$, with the following property:
for every $X,Y\in S^2$, there exist $X',Y'\in S^2$, as close to $X$ and $Y$ correspondingly, as we want, such that $X'Y'\in \Omega$ and $X'Y'$ is disjoint from $K$.
Verify that there exists a set $H\subset S^2$, such that $H$ is dense in the unit sphere $S^2$, and the chords connecting any two points of $H$ are disjoint from $K$.
EDIT: The statement fixed. See post #4
2007 Moldova National Olympiad, 12.8
Find all continuous functions $f\colon [0;1] \to R$ such that
\[\int_{0}^{1}f(x)dx = 2\int_{0}^{1}(f(x^{4}))^{2}dx+\frac{2}{7}\]
2014 Cezar Ivănescu, 1
For a sequence $ \left( x_n \right)_{n\ge 1} $ of real numbers that are at least $ 1, $ prove that the series $ \sum_{i=1}^{\infty } \frac{1}{x_i} $ converges if and only if the series $ \sum_{i=1}^{\infty } \frac{1}{1+x_i} $ converges if and only if the series $ \sum_{i=1}^{\infty } \frac{1}{\lfloor x_i\rfloor } $ converges.
1985 Miklós Schweitzer, 7
Let $p_1$ and $p_2$ be positive real numbers. Prove that there exist functions $f_i\colon \mathbb R \rightarrow \mathbb R$ such that the smallest positive period of $f_i$ is $p_i\, (i=1, 2)$, and $f_1-f_2$ is also periodic. [J. Riman]
2011 Romania National Olympiad, 2
Let be a continuous function $ f:[0,1]\longrightarrow\left( 0,\infty \right) $ having the property that, for any natural number $ n\ge 2, $ there exist $ n-1 $ real numbers $ 0<t_1<t_2<\cdots <t_{n-1}<1, $ such that
$$ \int_0^{t_1} f(t)dt=\int_{t_1}^{t_2} f(t)dt=\int_{t_2}^{t_3} f(t)dt=\cdots =\int_{t_{n-2}}^{t_{n-1}} f(t)dt=\int_{t_{n-1}}^{1} f(t)dt. $$
Calculate $ \lim_{n\to\infty } \frac{n}{\frac{1}{f(0)} +\sum_{i=1}^{n-1} \frac{1}{f\left( t_i \right)} +\frac{1}{f(1)}} . $
2014 ISI Entrance Examination, 7
Let $f: [0,\infty)\to \mathbb{R}$ a non-decreasing function. Then show this inequality holds for all $x,y,z$ such that $0\le x<y<z$.
\begin{align*} & (z-x)\int_{y}^{z}f(u)\,\mathrm{du}\ge (z-y)\int_{x}^{z}f(u)\,\mathrm{du} \end{align*}
2000 IMC, 2
Let $f$ be continuous and nowhere monotone on $[0,1]$. Show that the set of points on which $f$ obtains a local minimum is dense.
2018 Korea USCM, 6
Suppose a continuous function $f:[0,1]\to\mathbb{R}$ is differentiable on $(0,1)$ and $f(0)=1$, $f(1)=0$. Then, there exists $0<x_0<1$ such that
$$|f'(x_0)| \geq 2018 f(x_0)^{2018}$$
2005 Gheorghe Vranceanu, 3
Let be a continuous function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having a positive period $ T. $ Prove that:
$$ \lim_{n\to\infty } e^{-nT}\int_0^{nT} e^tf(t)dt=\frac{1}{e^T-1}\int_0^T e^tf(t)dt $$
2006 Cezar Ivănescu, 3
[b]a)[/b] Let be a sequence $ \left( x_n \right)_{n\ge 1} $ defined by the recursion $ x_{n+1}=\frac{1+x_n}{1-x_n} , $ with $ x_1=2006. $ Calculate $ \lim_{n\to\infty } \frac{x_1+x_2+\cdots +x_n}{n} . $
[b]b)[/b] Prove that if a convergent sequence $ \left( s_n \right)_{n\ge 1} $ verifies $ a_{2^n} =na_n , $ for any natural numbers $ n, $ then $ a_n=0, $ for any natural numbers $ n. $
[i]Cornel Stoicescu[/i]
2001 Miklós Schweitzer, 2
Let $\alpha \leq -2$ be an integer. Prove that for every pair $(\beta_0, \beta_1)$ of integers there exists a uniquely determined sequence $0\leq q_0, \ldots, q_k<\alpha ^ 2 - \alpha$ of integers, such that $q_k\neq 0$ if $(\beta_0, \beta 1)\neq (0,0)$ and
$$\beta_i=\sum_{j=0}^k q_j(\alpha - i)^j,\text{ for }i=0,1$$
1972 Miklós Schweitzer, 5
We say that the real-valued function $ f(x)$ defined on the interval $ (0,1)$ is approximately continuous on $ (0,1)$ if for any $ x_0 \in (0,1)$ and $ \varepsilon >0$ the point $ x_0$ is a point of interior density $ 1$ of the set \[ H\equal{} \{x : \;|f(x)\minus{}f(x_0)|< \varepsilon \ \}.\] Let $ F \subset (0,1)$ be a countable closed set, and $ g(x)$ a real-valued function defined on $ F$. Prove the existence of an approximately continuous function $ f(x)$ defined on $ (0,1)$ such that \[ f(x)\equal{}g(x) \;\textrm{for all}\ \;x \in F\ .\]
[i]M. Laczkovich, Gy. Petruska[/i]
2012 Grigore Moisil Intercounty, 4
A real continuous function has the property that its evaluation at any point is nilpotent under composition with itself.
Prove that this function is $ 0. $
[i]Vasile Pop[/i]
1985 Traian Lălescu, 2.3
Let $ X $ be the power set of set of $ \{ 0\}\cup\mathbb{N} , $ and let be a function $ d:X^2\longrightarrow\mathbb{R} $ defined as
$$ d(U,V)=\sum_{n\in\mathbb{N}}\frac{\chi_U (n) +\chi_V (n) -2\chi_{U\cap V} (n)}{2} , $$
where $ \chi_W (n)=\left\{ \begin{matrix} 1,& n\in W\\ 0,& n\not\in W \end{matrix} \right. ,\quad\forall W\in X,\forall n\in\mathbb{N} . $
[b]a)[/b] Prove that there exists an unique $ V' $ such that $ \lim_{k\to\infty} d\left( \{ k+i|i\in\mathbb{N}\} , V'\right) =0. $
[b]b)[/b] Demonstrate that for all $ V\in X $ there exists a $ v\in\mathbb{N} $ with $ d\left( \left\{ \frac{3}{2} -\frac{1}{2}(-1)^{v} \right\} , V \right) >\frac{1}{k} . $
[b]c)[/b] Let $ f: X\longrightarrow X,\quad f(X)=\left\{ 1+x|x\in X\right\} . $ Calculate $ d\left( f(A),f(B) \right) $ in terms of $ d(A,B) $ and prove that $ f $ admits an unique fixed point.
2011 Romania National Olympiad, 3
[color=darkred]Let $g:\mathbb{R}\to\mathbb{R}$ be a continuous and strictly decreasing function with $g(\mathbb{R})=(-\infty,0)$ . Prove that there are no continuous functions $f:\mathbb{R}\to\mathbb{R}$ with the property that there exists a natural number $k\ge 2$ so that : $\underbrace{f\circ f\circ\ldots\circ f}_{k\text{ times}}=g$ . [/color]
1950 Miklós Schweitzer, 1
Let $ a>0$, $ d>0$ and put
$ f(x)\equal{}\frac{1}{a}\plus{}\frac{x}{a(a\plus{}d)}\plus{}\cdots\plus{}\frac{x^n}{a(a\plus{}d)\cdots(a\plus{}nd)}\plus{}\cdots$
Give a closed form for $ f(x)$.