This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2002 Romania National Olympiad, 3

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a continuous and bounded function such that \[x\int_{x}^{x+1}f(t)\, \text{d}t=\int_{0}^{x}f(t)\, \text{d}t,\quad\text{for any}\ x\in\mathbb{R}.\] Prove that $f$ is a constant function.

2006 Victor Vâlcovici, 1

Let be a nondegenerate and closed interval $ I $ of real numbers, a short map $ m:I\longrightarrow I, $ and a sequence of functions $ \left( x_n \right)_{n\ge 1} :I\longrightarrow\mathbb{R} $ such that $ x_1 $ is the identity map and $$ 2x_{n+1}=x_n+m\circ x_n , $$ for any natural numbers $ n. $ Prove that: [b]a)[/b] there exists a nondegenerate interval having the property that any point of it is a fixed point for $ m. $ [b]b)[/b] $ \left( x_n \right)_{n\ge 1} $ is pointwise convergent and that its limit function is a short map.

2010 N.N. Mihăileanu Individual, 2

Let be a continuous function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the property that there exists a continuous and bounded function $ g:\mathbb{R}\longrightarrow\mathbb{R} $ that verifies the equality $$ f(x)=\int_0^x f(\xi )g(\xi )d\xi , $$ for any real number $ x. $ Prove that $ f=0. $ [i]Nelu Chichirim[/i]

Gheorghe Țițeica 2024, P1

Find all continuous functions $f,g:\mathbb{R}\rightarrow\mathbb{R}$ such that for any sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ such that the sequence $(a_n+b_n)_{n\geq 1}$ is convergent, the sequence $(f(a_n)+g(b_n))_{n\geq 1}$ is also convergent.

2015 Romania National Olympiad, 3

Let be two nonnegative real numbers $ a,b $ with $ b>a, $ and a sequence $ \left( x_n \right)_{n\ge 1} $ of real numbers such that the sequence $ \left( \frac{x_1+x_2+\cdots +x_n}{n^a} \right)_{n\ge 1} $ is bounded. Show that the sequence $ \left( x_1+\frac{x_2}{2^b} +\frac{x_3}{3^b} +\cdots +\frac{x_n}{n^b} \right)_{n\ge 1} $ is convergent.

2000 IMC, 6

Let $f: \mathbb{R}\rightarrow ]0,+\infty[$ be an increasing differentiable function with $\lim_{x\rightarrow+\infty}f(x)=+\infty$ and $f'$ is bounded, and let $F(x)=\int^x_0 f(t) dt$. Define the sequence $(a_n)$ recursively by $a_0=1,a_{n+1}=a_n+\frac1{f(a_n)}$ Define the sequence $(b_n)$ by $b_n=F^{-1}(n)$. Prove that $\lim_{x\rightarrow+\infty}(a_n-b_n)=0$.

2009 Olympic Revenge, 2

Prove that $\int_{0}^{\frac{\pi}{2}} arctg (1 - \sin^2x\cos^2x)dx = \frac{\pi^2}{4} - \pi arctg\sqrt{\frac{\sqrt{2}-1}{2}}$

2013 Romania National Olympiad, 1

Determine continuous functions $f:\mathbb{R}\to \mathbb{R}$ such that $\left( {{a}^{2}}+ab+{{b}^{2}} \right)\int\limits_{a}^{b}{f\left( x \right)dx=3\int\limits_{a}^{b}{{{x}^{2}}f\left( x \right)dx,}}$ for every $a,b\in \mathbb{R}$ .

1995 Miklós Schweitzer, 10

Let $X =\{ X_1 , X_2 , ...\}$ be a countable set of points in space. Show that there is a positive sequence $\{a_k\}$ such that for any point $Z\not\in X$ the distance between the point Z and the set $\{X_1,X_2 , ...,X_k\}$ is at least $a_k$ for infinitely many k.

1951 Miklós Schweitzer, 3

Consider the iterated sequence (1) $ x_0,x_1 \equal{} f(x_0),\dots,x_{n \plus{} 1} \equal{} f(x_n),\dots$, where $ f(x) \equal{} 4x \minus{} x^2$. Determine the points $ x_0$ of $ [0,1]$ for which (1) converges and find the limit of (1).

2007 District Olympiad, 3

Find all continuous functions $f : \mathbb R \to \mathbb R$ such that: (a) $\lim_{x \to \infty}f(x)$ exists; (b) $f(x) = \int_{x+1}^{x+2}f(t) \, dt$, for all $x \in \mathbb R$.

1999 Romania National Olympiad, 3

Let $f:\mathbb{R} \to \mathbb{R}$ be a monotonic function and $a,b,c,d$ be real numbers with $a$ and $c$ nonzero. Prove that if the equalities [center]$\int\limits_x^{x+\sqrt{3}} f(t) \mathrm{d}t=ax+b$ and $\int\limits_x^{x+\sqrt{2}} f(t) \mathrm{d}t=cx+d$[/center] hold for every real number $x,$ then $f$ is a polynomial function of degree one.

2014-2015 SDML (Middle School), 12

Let $f\left(x\right)=x^2-14x+52$ and $g\left(x\right)=ax+b$, where $a$ and $b$ are positive. Find $a$, given that $f\left(g\left(-5\right)\right)=3$ and $f\left(g\left(0\right)\right)=103$. $\text{(A) }2\qquad\text{(B) }5\qquad\text{(C) }7\qquad\text{(D) }10\qquad\text{(E) }17$

1955 Miklós Schweitzer, 2

[b]2.[/b] Let $f_{1}(x), \dots , f_{n}(x)$ be Lebesgue integrable functions on $[0,1]$, with $\int_{0}^{1}f_{1}(x) dx= 0$ $ (i=1,\dots ,n)$. Show that, for every $\alpha \in (0,1)$, there existis a subset $E$ of $[0,1]$ with measure $\alpha$, such that $\int_{E}f_{i}(x)dx=0$. [b](R. 17)[/b]

2005 IberoAmerican Olympiad For University Students, 6

A smooth function $f:I\to \mathbb{R}$ is said to be [i]totally convex[/i] if $(-1)^k f^{(k)}(t) > 0$ for all $t\in I$ and every integer $k>0$ (here $I$ is an open interval). Prove that every totally convex function $f:(0,+\infty)\to \mathbb{R}$ is real analytic. [b]Note[/b]: A function $f:I\to \mathbb{R}$ is said to be [i]smooth[/i] if for every positive integer $k$ the derivative of order $k$ of $f$ is well defined and continuous over $\mathbb{R}$. A smooth function $f:I\to \mathbb{R}$ is said to be [i]real analytic[/i] if for every $t\in I$ there exists $\epsilon> 0$ such that for all real numbers $h$ with $|h|<\epsilon$ the Taylor series \[\sum_{k\geq 0}\frac{f^{(k)}(t)}{k!}h^k\] converges and is equal to $f(t+h)$.

2020 Jozsef Wildt International Math Competition, W51

Consider the sequence of real numbers $(a_n)_{n\ge1}$ such that $$\lim_{n\to\infty}\frac1{n^r}\sum_{k=1}^n\frac{a_k}k=l\in\mathbb R,r\in\mathbb N^*$$ Show that: $$\lim_{n\to\infty}\left(\dfrac{\displaystyle\sum_{p=n+1}^{2n}\sum_{k=1}^p\sum_{i=1}^k\frac{a_i}{p\cdot i}}{n^{r+1}}\right)=l\left(\frac{2^{r+1}}{r(r+1)}-\frac{2^r}{(r+1)^2}\right)$$ [i]Proposed by Florin Stănescu and Şerban Cioculescu[/i]

2008 District Olympiad, 1

Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a countinuous function such that $$ \int_0^1 f(x)dx=\int_0^1 xf(x)dx. $$ Show that there is a $ c\in (0,1) $ such that $ f(c)=\int_0^c f(x)dx. $

1994 IMC, 1

Let $f\in C^1[a,b]$, $f(a)=0$ and suppose that $\lambda\in\mathbb R$, $\lambda >0$, is such that $$|f'(x)|\leq \lambda |f(x)|$$ for all $x\in [a,b]$. Is it true that $f(x)=0$ for all $x\in [a,b]$?

1997 Romania National Olympiad, 2

Prove that: $\int_{-1}^1f^2(x)dx\ge \frac 1 2 (\int_{-1}^1f(x)dx)^2 +\frac 3 2(\int_{-1}^1xf(x)dx)^2$ Please give a proof without using even and odd functions. (the oficial proof uses those and seems to be un-natural) :D

2010 District Olympiad, 4

Let $ f: [0,1]\rightarrow \mathbb{R}$ a derivable function such that $ f(0)\equal{}f(1)$, $ \int_0^1f(x)dx\equal{}0$ and $ f^{\prime}(x) \neq 1\ ,\ (\forall)x\in [0,1]$. i)Prove that the function $ g: [0,1]\rightarrow \mathbb{R}\ ,\ g(x)\equal{}f(x)\minus{}x$ is strictly decreasing. ii)Prove that for each integer number $ n\ge 1$, we have: $ \left|\sum_{k\equal{}0}^{n\minus{}1}f\left(\frac{k}{n}\right)\right|<\frac{1}{2}$

1983 Miklós Schweitzer, 9

Prove that if $ E \subset \mathbb{R}$ is a bounded set of positive Lebesgue measure, then for every $ u < 1/2$, a point $ x\equal{}x(u)$ can be found so that \[ |(x\minus{}h,x\plus{}h) \cap E| \geq uh\] and \[ |(x\minus{}h,x\plus{}h) \cap (\mathbb{R} \setminus E)| \geq uh\] for all sufficiently small positive values of $ h$. [i]K. I. Koljada[/i]

2005 Alexandru Myller, 3

Let $f:[0,\infty)\to\mathbb R$ be a continuous function s.t. $\lim_{x\to\infty}\frac {f(x)}x=0$. Let $(x_n)_n$ be a sequence of positive real numbers s.t. $\left(\frac{x_n}n\right)_n$ is bounded. Prove that $\lim_{n\to\infty}\frac{f(x_n)}n=0$. [i]Dorin Andrica, Eugen Paltanea[/i]

2001 District Olympiad, 4

Prove that: a) the sequence $a_n=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n},\ n\ge 1$ is monotonic. b) there is a sequence $(a_n)_{n\ge 1}\in \{0,1\}$ such that: \[\lim_{n\to \infty} \left(\frac{a_1}{n+1}+\frac{a_2}{n+2}+\ldots +\frac{a_n}{n+n}\right)=\frac{1}{2}\] [i]Radu Gologan[/i]

2019 Teodor Topan, 2

Let $ I $ be a nondegenerate interval, and let $ F $ be a primitive of a function $ f:I\longrightarrow\mathbb{R} . $ Show that for any distinct $ a,b\in I, $ the tangents to the graph of $ F $ at the points $ (a,F(a)) ,(b,F(b)) $ are concurrent at a point whose abscisa is situated in the interval $ (a,b). $ [i]Nicolae Bourbăcuț[/i]

2017 CIIM, Problem 2

Let $f :\mathbb{R} \to \mathbb{R}$ a derivable function such that $f(0) = 0$ and $|f'(x)| \leq |f(x)\cdot log |f(x)||$ for every $x \in \mathbb{R}$ such that $0 < |f(x)| < 1/2.$ Prove that $f(x) = 0$ for every $x \in \mathbb{R}$.