This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2014 ISI Entrance Examination, 4

Let $f,g$ are defined in $(a,b)$ such that $f(x),g(x)\in\mathcal{C}^2$ and non-decreasing in an interval $(a,b)$ . Also suppose $f^{\prime \prime}(x)=g(x),g^{\prime \prime}(x)=f(x)$. Also it is given that $f(x)g(x)$ is linear in $(a,b)$. Show that $f\equiv 0 \text{ and } g\equiv 0$ in $(a,b)$.

2019 Ramnicean Hope, 1

Calculate $ \lim_{n\to\infty }\left(\lim_{x\to 0} \left( -\frac{n}{x}+1+\frac{1}{x}\sum_{r=2}^{n+1}\sqrt[r!]{1+\sin rx}\right)\right) . $ [i]Constantin Rusu[/i]

1975 Miklós Schweitzer, 7

Let $ a<a'<b<b'$ be real numbers and let the real function $ f$ be continuous on the interval $ [a,b']$ and differentiable in its interior. Prove that there exist $ c \in (a,b), c'\in (a',b')$ such that \[ f(b)\minus{}f(a)\equal{}f'(c)(b\minus{}a),\] \[ f(b')\minus{}f(a')\equal{}f'(c')(b'\minus{}a'),\] and $ c<c'$. [i]B. Szokefalvi Nagy[/i]

2012 Pre-Preparation Course Examination, 4

Suppose that $X$ and $Y$ are metric spaces and $f:X \longrightarrow Y$ is a continious function. Also $f_1: X\times \mathbb R \longrightarrow Y\times \mathbb R$ with equation $f_1(x,t)=(f(x),t)$ for all $x\in X$ and $t\in \mathbb R$ is a closed function. Prove that for every compact set $K\subseteq Y$, its pre-image $f^{pre}(K)$ is a compact set in $X$.

1986 Traian Lălescu, 1.3

Prove that the application $ \mathbb{R}\ni x\mapsto 2x+ \{ x\} $ and its inverse are bijective and continuous.

2016 Korea USCM, 5

For $f(x) = \cos\left(\frac{3\sqrt{3}\pi}{8}(x-x^3 ) \right)$, find the value of $$\lim_{t\to\infty} \left( \int_0^1 f(x)^t dx \right)^\frac{1}{t} + \lim_{t\to-\infty} \left( \int_0^1 f(x)^t dx \right)^\frac{1}{t} $$

1963 Miklós Schweitzer, 6

Show that if $ f(x)$ is a real-valued, continuous function on the half-line $ 0\leq x < \infty$, and \[ \int_0^{\infty} f^2(x)dx <\infty\] then the function \[ g(x)\equal{}f(x)\minus{}2e^{\minus{}x}\int_0^x e^tf(t)dt\] satisfies \[ \int _0^{\infty}g^2(x)dx\equal{}\int_0^{\infty}f^2(x)dx.\] [B. Szokefalvi-Nagy]

2011 VTRMC, Problem 5

Find $\lim_{x\to\infty}\left((2x)^{1+\frac1{2x}}-x^{1+\frac1x}-x\right)$.

2008 Romania National Olympiad, 1

Let $ f : (0,\infty) \to \mathbb R$ be a continous function such that the sequences $ \{f(nx)\}_{n\geq 1}$ are nondecreasing for any real number $ x$. Prove that $ f$ is nondecreasing.

2020 Jozsef Wildt International Math Competition, W38

Let $(a_n)_{n\in\mathbb N}$ be a sequence, given by the recurrence: $$ma_{n+1}+(m-2)a_n-a_{n-1}=0$$ where $m\in\mathbb R$ is a parameter and the first two terms of $a_n$ are fixed known real numbers. Find $m\in\mathbb R$, so that $$\lim_{n\to\infty}a_n=0$$ [i]Proposed by Laurențiu Modan[/i]

2011 SEEMOUS, Problem 1

Let $f:[0,1]\rightarrow R$ be a continuous function and n be an integer number,n>0.Prove that $\int_0^1f(x)dx \le (n+1)*\int_0^1 x^n*f(x)dx $

2007 Nicolae Păun, 2

Consider a sequence of positive real numbers $ \left( x_n \right)_{n\ge 1} $ and a primitivable function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ [b]a)[/b] Prove that $ f $ is monotonic and continuous if for any natural numbers $ n $ and real numbers $ x, $ the inequality $$ f\left( x+x_n \right)\geqslant f(x) $$ is true. [b]b)[/b] Show that $ f $ is convex if for any natural numbers $ n $ and real numbers $ x, $ the inequality $$ f\left( x+2x_n \right) +f(x)\geqslant 2f\left( x+x_n \right) $$ is true. [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

2012 Romania National Olympiad, 1

[color=darkred]Let $f,g\colon [0,1]\to [0,1]$ be two functions such that $g$ is monotonic, surjective and $|f(x)-f(y)|\le |g(x)-g(y)|$ , for any $x,y\in [0,1]$ . [list] [b]a)[/b] Prove that $f$ is continuous and that there exists some $x_0\in [0,1]$ with $f(x_0)=g(x_0)$ . [b]b)[/b] Prove that the set $\{x\in [0,1]\, |\, f(x)=g(x)\}$ is a closed interval. [/list][/color]

2021 Miklós Schweitzer, 4

Let $I$ be a nonempty open subinterval of the set of positive real numbers. For which even $n \in \mathbb{N}$ are there injective function $f: I \to \mathbb{R}$ and positive function $p: I \to \mathbb{R}$, such that for all $x_1 , \ldots , x_n \in I$, \[ f \left( \frac{1}{2} \left( \frac{x_1+\cdots+x_n}{n}+\sqrt[n]{x_1 \cdots x_n} \right) \right)=\frac{p(x_1)f(x_1)+\cdots+p(x_n)f(x_n)}{p(x_1)+\cdots+p(x_n)} \] holds?

2011 Graduate School Of Mathematical Sciences, The Master Cource, The University Of Tokyo, 3

Let $a$ be a positive real number. Evaluate $I=\int_0^{+\infty} \frac{\sin x\cos x}{x(x^2+a^2)}dx.$

2011 Bogdan Stan, 3

Let be a sequence of real numbers $ \left( x_n \right)_{n\ge 1} $ chosen such that the limit of the sequence $ \left( x_{n+2011}-x_n \right)_{n\ge 1} $ exists. Calculate $ \lim_{n\to\infty } \frac{x_n}{n} . $ [i]Cosmin Nițu[/i]

1986 Traian Lălescu, 1.4

Let be a parametric set: $$ \mathcal{F}_{\lambda } =\left\{ f:[1,\infty)\longrightarrow\mathbb{R}\bigg| x\in(1,\infty )\implies \int_{x}^{x^2+\lambda^2 x} f\left( \xi\right) d\xi =1\right\} . $$ [b]a)[/b] Show that $ \mathcal{F}_0 =\emptyset . $ [b]b)[/b] Prove that $ \lambda\neq 0 $ implies $ \mathcal{F}_{\lambda }\neq\emptyset . $

2016 Korea USCM, 4

Suppose a continuous function $f:[-\frac{\pi}{4},\frac{\pi}{4}]\to[-1,1]$ and differentiable on $(-\frac{\pi}{4},\frac{\pi}{4})$. Then, there exists a point $x_0\in (-\frac{\pi}{4},\frac{\pi}{4})$ such that $$|f'(x_0)|\leq 1+f(x_0)^2$$

2023 Brazil Undergrad MO, 1

Let $p$ be the [i]potentioral[/i] function, from positive integers to positive integers, defined by $p(1) = 1$ and $p(n + 1) = p(n)$, if $n + 1$ is not a perfect power and $p(n + 1) = (n + 1) \cdot p(n)$, otherwise. Is there a positive integer $N$ such that, for all $n > N,$ $p(n) > 2^n$?

1993 Vietnam National Olympiad, 3

Define the sequences $a_{0}, a_{1}, a_{2}, ...$ and $b_{0}, b_{1}, b_{2}, ...$ by $a_{0}= 2, b_{0}= 1, a_{n+1}= 2a_{n}b_{n}/(a_{n}+b_{n}), b_{n+1}= \sqrt{a_{n+1}b_{n}}$. Show that the two sequences converge to the same limit, and find the limit.

1986 Traian Lălescu, 2.3

Discuss $ \lim_{x\to 0}\frac{\lambda +\sin\frac{1}{x} \pm\cos\frac{1}{x}}{x} . $

2013 BMT Spring, 5

Suppose that $c_n=(-1)^n(n+1)$. While the sum $\sum_{n=0}^\infty c_n$ is divergent, we can still attempt to assign a value to the sum using other methods. The Abel Summation of a sequence, $a_n$, is $\operatorname{Abel}(a_n)=\lim_{x\to1^-}\sum_{n=0}^\infty a_nx^n$. Find $\operatorname{Abel}(c_n)$.

2014 IMS, 4

Let $(X,d)$ be a metric space and $f:X \to X$ be a function such that $\forall x,y\in X : d(f(x),f(y))=d(x,y)$. $\text{a})$ Prove that for all $x \in X$, $\lim_{n \rightarrow +\infty} \frac{d(x,f^n(x))}{n}$ exists, where $f^n(x)$ is $\underbrace{f(f(\cdots f(x)}_{n \text{times}} \cdots ))$. $\text{b})$ Prove that the amount of the limit does [b][u]not[/u][/b] depend on choosing $x$.

1971 Miklós Schweitzer, 6

Let $ a(x)$ and $ r(x)$ be positive continuous functions defined on the interval $ [0,\infty)$, and let \[ \liminf_{x \rightarrow \infty} (x-r(x)) >0.\] Assume that $ y(x)$ is a continuous function on the whole real line, that it is differentiable on $ [0, \infty)$, and that it satisfies \[ y'(x)=a(x)y(x-r(x))\] on $ [0, \infty)$. Prove that the limit \[ \lim_{x \rightarrow \infty}y(x) \exp \left\{ -%Error. "diaplaymath" is a bad command. \int_0^x a(u)du \right \}\] exists and is finite. [i]I. Gyori[/i]

1997 Romania National Olympiad, 4

Let two bijective and continuous functions$f,g: \mathbb{R}\to\mathbb{R}$ such that : $\left(f\circ g^{-1}\right)(x)+\left(g\circ f^{-1}\right)(x)=2x$ for any real $x$. Show that If we have a value $x_{0}\in\mathbb{R}$ such that $f(x_{0})=g(x_{0})$, then $f=g$.