Found problems: 884
1993 Putnam, B4
$K(x, y), f(x)$ and $g(x)$ are positive and continuous for $x, y \subseteq [0, 1]$. $\int_{0}^{1} f(y) K(x, y) dy = g(x)$ and $\int_{0}^{1} g(y) K(x, y) dy = f(x)$ for all $x \subseteq [0, 1]$. Show that $f = g$ on $[0, 1]$.
2012 Miklós Schweitzer, 7
Let $\Gamma$ be a simple curve, lying inside a circle of radius $r$, rectifiable and of length $\ell$. Prove that if $\ell > kr\pi$, then there exists a circle of radius $r$ which intersects $\Gamma$ in at least $k+1$ distinct points.
2006 Victor Vâlcovici, 2
Let be a differentiable function $ f:[0,1]\longrightarrow\mathbb{R} $ whose derivative has a positive Lipschitz constant $ L. $ Show that
[b]a)[/b] $ x,y\in [0,1]\implies | f(x)-f(y)-f'(y)(x-y) |\le L\cdot (x-y)^2 $
[b]b)[/b] $ \lim_{n\to\infty } \left( n\int_0^1 f(x)dx-\sum_{i=1}^nf\left( \frac{2i-1}{2n} \right) \right) =0. $
2014 District Olympiad, 2
[list=a]
[*]Let $f\colon\mathbb{R}\rightarrow\mathbb{R}$ be a function such that
$g\colon\mathbb{R}\rightarrow\mathbb{R}$, $g(x)=f(x)+f(2x)$, and
$h\colon\mathbb{R}\rightarrow\mathbb{R}$, $h(x)=f(x)+f(4x)$, are continuous
functions. Prove that $f$ is also continuous.
[*]Give an example of a discontinuous function $f\colon\mathbb{R}
\rightarrow\mathbb{R}$, with the following property: there exists an interval
$I\subset\mathbb{R}$, such that, for any $a$ in $I$, the function $g_{a}
\colon\mathbb{R}\rightarrow\mathbb{R}$, $g_{a}(x)=f(x)+f(ax)$, is continuous.[/list]
2013 Gheorghe Vranceanu, 1
Find the pairs of functions $ f,g:\mathbb{R}\longrightarrow\mathbb{R} $ with $ f $ continuous, $ g $ differentiable and satisfying:
$$ -\sin g(x) + \int \cos f(x)dx =\cos g(x) +\int \sin f(x)dx $$
Gheorghe Țițeica 2025, P2
Let $f:[0,1]\rightarrow\mathbb{R}$ be a continuous function. Prove that $$\int_0^{\pi/2}f(\sin(2x))\sin x\, dx = \int_0^{\pi/2} f(\cos^2 x)\cos x\, dx.$$
2018 Ramnicean Hope, 1
Let be two nonzero real numbers $ a,b $ such that $ |a|\neq |b| $ and let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a function satisfying the functional relation
$$ af(x)+bf(-x)=(x^3+x)^5+\sin^5 x . $$
Calculate $ \int_{-2019}^{2019}f(x)dx . $
[i]Constantin Rusu[/i]
Gheorghe Țițeica 2025, P3
Let $(a_n)_{n\geq 0}$ be a sequence defined by $a_0\geq 0$ and the recurrence relation $$a_{n+1}=\frac{a_n^2-1}{n+1},$$ for all $n\geq 0$. Prove that here exists a real number $a> 0$ such that:
[list]
[*] if $a_0\geq a,$ $\lim_{n\rightarrow\infty}a_n = \infty$;
[*] if $a_0\in [0,a),$ $\lim_{n\rightarrow\infty}a_n = 0$.
2007 Moldova National Olympiad, 11.8
The continuous function and twice differentiable function $f: \mathbb{R}\rightarrow\mathbb{R}$ satisfies $2007^{2}\cdot f(x)+f''(x)=0$. Prove that there exist two such real numbers $k$ and $l$ such that $f(x)=l\cdot\sin(2007x)+k\cdot\cos(2007x)$.
2021 Science ON grade XI, 3
$\textbf{(a)}$ Let $a,b \in \mathbb{R}$ and $f,g :\mathbb{R}\rightarrow \mathbb{R}$ be differentiable functions. Consider the function $$h(x)=\begin{vmatrix}
a &b &x\\
f(a) &f(b) &f(x)\\
g(a) &g(b) &g(x)\\
\end{vmatrix}$$
Prove that $h$ is differentiable and find $h'$.
\\ \\
$\textbf{(b)}$ Let $n\in \mathbb{N}$, $n\geq 3$, take $n-1$ pairwise distinct real numbers $a_1<a_2<\dots <a_{n-1}$ with sum $\sum_{i=1}^{n-1}a_i = 0$, and consider $n-1$ functions $f_1,f_2,...f_{n-1}:\mathbb{R}\rightarrow \mathbb{R}$, each of them $n-2$ times differentiable over $\mathbb{R}$. Prove that there exists $a\in (a_1,a_{n-1})$ and $\theta, \theta_1,...,\theta_{n-1}\in \mathbb{R}$, not all zero, such that $$\sum_{k=1}^{n-1} \theta_k a_k=\theta a$$ and, at the same time, $$\sum_{k=1}^{n-1}\theta_kf_i(a_k)=\theta f_i^{(n-2)}(a)$$ for all $i\in\{1,2...,n-1\} $.
\\ \\
[i](Sergiu Novac)[/i]
2001 District Olympiad, 3
Consider a continuous function $f:[0,1]\rightarrow \mathbb{R}$ such that for any third degree polynomial function $P:[0,1]\to [0,1]$, we have
\[\int_0^1f(P(x))dx=0\]
Prove that $f(x)=0,\ (\forall)x\in [0,1]$.
[i]Mihai Piticari[/i]
1971 Miklós Schweitzer, 10
Let $ \{\phi_n(x) \}$ be a sequence of functions belonging to $ L^2(0,1)$ and having norm less that $ 1$ such that for any
subsequence $ \{\phi_{n_k}(x) \}$ the measure of the set \[ \{x \in (0,1) : \;|\frac{1}{\sqrt{N}} \sum _{k=1}^N \phi_{n_k}(x)| \geq y\ \}\] tends to $ 0$ as $ y$ and $ N$ tend to infinity. Prove that $ \phi_n$ tends to $ 0$ weakly in the function space $ L^2(0,1).$
[i]F. Moricz[/i]
1998 Vietnam National Olympiad, 1
Let $a\geq 1$ be a real number. Put $x_{1}=a,x_{n+1}=1+\ln{(\frac{x_{n}^{2}}{1+\ln{x_{n}}})}(n=1,2,...)$. Prove that the sequence $\{x_{n}\}$ converges and find its limit.
2007 Miklós Schweitzer, 7
Prove that there exist natural numbers $n_k, m_k, k=0,1,2,\ldots$, such that the numbers $n_k+m_k, k=1,2,\ldots$ are pairwise distinct primes and the set of linear combination of the polynomials $x^{n_k}y^{m_k}$ is dense in $C([0,1] \times [0,1])$ under the supremum norm.
(translated by Miklós Maróti)
2016 VJIMC, 4
Let $f: [0,\infty) \to \mathbb{R}$ be a continuously differentiable function satisfying
$$f(x) = \int_{x - 1}^xf(t)\mathrm{d}t$$
for all $x \geq 1$. Show that $f$ has bounded variation on $[1,\infty)$, i.e.
$$\int_1^{\infty} |f'(x)|\mathrm{d}x < \infty.$$
1994 IMC, 2
Let $f\in C^1(a,b)$, $\lim_{x\to a^+}f(x)=\infty$, $\lim_{x\to b^-}f(x)=-\infty$ and $f'(x)+f^2(x)\geq -1$ for $x\in (a,b)$. Prove that $b-a\geq\pi$ and give an example where $b-a=\pi$.
2005 IberoAmerican Olympiad For University Students, 6
A smooth function $f:I\to \mathbb{R}$ is said to be [i]totally convex[/i] if $(-1)^k f^{(k)}(t) > 0$ for all $t\in I$ and every integer $k>0$ (here $I$ is an open interval).
Prove that every totally convex function $f:(0,+\infty)\to \mathbb{R}$ is real analytic.
[b]Note[/b]: A function $f:I\to \mathbb{R}$ is said to be [i]smooth[/i] if for every positive integer $k$ the derivative of order $k$ of $f$ is well defined and continuous over $\mathbb{R}$. A smooth function $f:I\to \mathbb{R}$ is said to be [i]real analytic[/i] if for every $t\in I$ there exists $\epsilon> 0$ such that for all real numbers $h$ with $|h|<\epsilon$ the Taylor series
\[\sum_{k\geq 0}\frac{f^{(k)}(t)}{k!}h^k\]
converges and is equal to $f(t+h)$.
2002 IMC, 4
Let $f : [a, b] \rightarrow [a, b]$ be a continuous function and let $p \in [a, b]$. Define $p_0 = p$ and $p_{n+1} = f(p_n)$ for $n = 0, 1, 2,...$. Suppose that the set $T_p = \{p_n : n = 0, 1, 2,...\}$ is closed, i.e., if $x \not\in T_p$ then $\exists \delta > 0$ such that for all $x' \in T_p$ we have $|x'-x|\ge\delta$.
Show that $T_p$ has finitely many elements.
2017 Romania National Olympiad, 1
[b]a)[/b] Let be a continuous function $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R}_{>0} . $ Show that there exists a natural number $ n_0 $ and a sequence of positive real numbers $ \left( x_n \right)_{n>n_0} $ that satisfy the following relation.
$$ n\int_0^{x_n} f(t)dt=1,\quad n_0<\forall n\in\mathbb{N} $$
[b]b)[/b] Prove that the sequence $ \left( nx_n \right)_{n> n_0} $ is convergent and find its limit.
2007 Nicolae Coculescu, 2
Let be two sequences $ \left( a_n \right)_{n\ge 0} , \left( b_n \right)_{n\ge 0} $ satisfying the following system:
$$ \left\{ \begin{matrix} a_0>0,& \quad a_{n+1} =a_ne^{-a_n} , &\quad\forall n\ge 0 \\ b_{0}\in (0,1) ,& \quad b_{n+1} =b_n\cos \sqrt{b_n} ,& \quad\forall n\ge 0 \end{matrix} \right. $$
Calculate $ \lim_{n\to\infty} \frac{a_n}{b_n} . $
[i]Florian Dumitrel[/i]
2004 Alexandru Myller, 1
[b]a)[/b] Let $ \left( x_n \right)_{n\ge 1} $ be a sequence of real numbers having the property that $ \left| x_{n+1} -x_n \right|\leqslant 1/2^n, $ for any $ n\geqslant 1. $
Show that $ \left( x_n \right)_{n\ge 1} $ is convergent.
[b]b)[/b] Create a sequence $ \left( y_n \right)_{n\ge 1} $ of real numbers that has the following properties:
$ \text{(i) } \lim_{n\to\infty } \left( y_{n+1} -y_n \right) = 0 $
$ \text{(ii) } $ is bounded
$ \text{(iii) } $ is divergent
[i]Eugen Popa[/i]
2005 Unirea, 3
$a_1=b_1=1$
$a_{n+1}=b_n+\frac{1}{n}$
$b_{n+1}=a_n-\frac{1}{n}$
Prove that $a_n$, $b_n$ is not convergent, but $a_nb_n$ is convergent
Laurentin Panaitopol
1982 Miklós Schweitzer, 6
For every positive $ \alpha$, natural number $ n$, and at most $ \alpha n$ points $ x_i$, construct a trigonometric polynomial $ P(x)$ of degree at most $ n$ for which \[ P(x_i) \leq 1, \; \int_0^{2 \pi} P(x)dx=0,\ \; \textrm{and}\ \; \max P(x) > cn\ ,\] where the constant $ c$ depends only on $ \alpha$.
[i]G. Halasz[/i]
2003 District Olympiad, 4
Consider the continuous functions $ f:[0,\infty )\longrightarrow\mathbb{R}, g: [0,1]\longrightarrow\mathbb{R} , $ where $
f $ has a finite limit at $ \infty . $ Show that:
$$ \lim_{n \to \infty} \frac{1}{n}\int_0^n f(x) g\left( \frac{x}{n} \right) dx =\int_0^1 g(x)dx\cdot\lim_{x\to\infty} f(x) . $$
2023 CIIM, 4
For a positive integer $n$, $\sigma(n)$ denotes the sum of the positive divisors of $n$. Determine $$\limsup\limits_{n\rightarrow \infty} \frac{\sigma(n^{2023})}{(\sigma(n))^{2023}}$$
[b]Note:[/b] Given a sequence ($a_n$) of real numbers, we say that $\limsup\limits_{n\rightarrow \infty} a_n = +\infty$ if ($a_n$) is not upper bounded, and, otherwise, $\limsup\limits_{n\rightarrow \infty} a_n$ is the smallest constant $C$ such that, for every real $K > C$, there is a positive integer $N$ with $a_n < K$ for every $n > N$.