This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2020 Jozsef Wildt International Math Competition, W21

Evaluate $$\lim_{n\to\infty}\left(\frac{1+\frac13+\ldots+\frac1{2n+1}}{\ln\sqrt n}\right)^{\ln\sqrt n}$$ [i]Proposed by Ángel Plaza[/i]

2010 District Olympiad, 3

Let $ f: \mathbb{R}\rightarrow \mathbb{R}$ a strictly increasing function such that $ f\circ f$ is continuos. Prove that $ f$ is continuos.

2010 Today's Calculation Of Integral, 547

Find the minimum value of $ \int_0^1 |e^{ \minus{} x} \minus{} a|dx\ ( \minus{} \infty < a < \infty)$.

2017 Vietnam National Olympiad, 1

Given $a\in\mathbb{R}$ and a sequence $(u_n)$ defined by \[ \begin{cases} u_1=a\\ u_{n+1}=\frac{1}{2}+\sqrt{\frac{2n+3}{n+1}u_n+\frac{1}{4}}\quad\forall n\in\mathbb{N}^* \end{cases} \] a) Prove that $(u_n)$ is convergent sequence when $a=5$ and find the limit of the sequence in that case b) Find all $a$ such that the sequence $(u_n)$ is exist and is convergent.

2013 Miklós Schweitzer, 9

Prove that there is a function ${f: (0,\infty) \rightarrow (0,\infty)}$ which is nowhere continuous and for all ${x,y \in (0,\infty)}$ and any rational ${\alpha}$ we have \[ \displaystyle f\left( \left(\frac{x^\alpha+y^\alpha}{2}\right)^{\frac{1}{\alpha}}\right)\leq \left(\frac{f(x)^\alpha +f(y)^\alpha }{2}\right)^{\frac{1}{\alpha}}. \] Is there such a function if instead the above relation holds for every ${x,y \in (0,\infty)}$ and for every irrational ${\alpha}?$ [i]Proposed by Maksa Gyula and Zsolt Páles[/i]

1997 Miklós Schweitzer, 2

Let A = {1,4,6, ...} be a set of natural numbers n for which n is the product of an even number of primes and n+1 is the product of an odd number of primes (taking into account the multiplicity of prime powers). Prove that the series of the reciprocals of the elements of A is divergent. In other words, $A=\{n|\lambda(n)=1$ and $\lambda(n+1)=-1\}$ , where $\lambda$ is the liouville lambda function.

2014 District Olympiad, 4

Let $f\colon\mathbb{N}\rightarrow\mathbb{N}^{\ast}$ be a strictly increasing function. Prove that: [list=a] [*]There exists a decreasing sequence of positive real numbers, $(y_{n})_{n\in\mathbb{N}}$, converging to $0$, such that $y_{n}\leq2y_{f(n)}$, for all $n\in\mathbb{N}$. [*]If $(x_{n})_{n\in\mathbb{N}}$ is a decreasing sequence of real numbers, converging to $0$, then there exists a decreasing sequence of real numbers $(y_{n})_{n\in\mathbb{N}}$, converging to $0$, such that $x_{n}\leq y_{n} \leq2y_{f(n)}$, for all $n\in\mathbb{N}$.[/list]

2023 District Olympiad, P4

Consider the functions $f,g,h:\mathbb{R}_{\geqslant 0}\to\mathbb{R}_{\geqslant 0}$ and the binary operation $*:\mathbb{R}_{\geqslant 0}\times \mathbb{R}_{\geqslant 0}\to \mathbb{R}_{\geqslant 0}$ defined as \[x*y=f(x)+g(y)+h(x)\cdot|x-y|,\]for all $x,y\in\mathbb{R}_{\geqslant 0}$. Suppose that $(\mathbb{R}_{\geqslant 0},*)$ is a commutative monoid. Determine the functions $f,g,h$.

1985 Traian Lălescu, 1.2

Is there a real interval $ I $ for which there exists a primitivable function $ f:I\longrightarrow I $ with the property that $ (f\circ f) (x)=-x, $ for all $ x\in I $ ?

2004 Nicolae Coculescu, 4

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a continuous function having a primitive $ F $ having the property that $ f-F $ is positive globally. Calculate $ \lim_{x\to\infty } f(x) . $ [i]Florian Dumitrel[/i]

2004 Unirea, 3

Hello, I've been trying to solve this for a while now, but no success! I mean, I have an expression for this but not a closed one. I derived something in terms of Tchebychev Polynomials : cos(nx) = P_n(cos(x)). Any help is appreciated. Compute the following primitive: \[ \int \frac{x\sin\left(2004 x\right)}{\tan x}\ dx\]

2012 Pre-Preparation Course Examination, 2

Suppose that $\lim_{n\to \infty} a_n=a$ and $\lim_{n\to \infty} b_n=b$. Prove that $\lim_{n\to \infty}\frac{1}{n}(a_1b_n+a_2b_{n-1}+...+a_nb_1)=ab$.

2001 SNSB Admission, 2

Let be a number $ a\in \left[ 1,\infty \right) $ and a function $ f\in\mathcal{C}^2(-a,a) . $ Show that the sequence $$ \left( \sum_{k=1}^n f\left( \frac{k}{n^2} \right) \right)_{n\ge 1} $$ is convergent, and determine its limit.

1997 VJIMC, Problem 4-M

Find all real numbers $a>0$ for which the series $$\sum_{n=1}^\infty\frac{a^{f(n)}}{n^2}$$is convergent; $f(n)$ denotes the number of $0$'s in the decimal expansion of $f$.

MIPT Undergraduate Contest 2019, 1.2

Does there exist a strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ that takes on only irrational values?

2014 Miklós Schweitzer, 8

Let $n\ge 1$ be a fixed integer. Calculate the distance $\inf_{p,f}\, \max_{0\le x\le 1} |f(x)-p(x)|$ , where $p$ runs over polynomials of degree less than $n$ with real coefficients and $f$ runs over functions $f(x)= \sum_{k=n}^{\infty} c_k x^k$ defined on the closed interval $[0,1]$ , where $c_k \ge 0$ and $\sum_{k=n}^{\infty} c_k=1$.

1980 Miklós Schweitzer, 8

Let $ f(x)$ be a nonnegative, integrable function on $ (0,2\pi)$ whose Fourier series is $ f(x)\equal{}a_0\plus{}\sum_{k\equal{}1}^{\infty} a_k \cos (n_k x)$, where none of the positive integers $ n_k$ divides another. Prove that $ |a_k| \leq a_0$. [i]G. Halasz[/i]

2019 Simon Marais Mathematical Competition, A4

Suppose $x_1,x_2,x_3,\dotsc$ is a strictly decreasing sequence of positive real numbers such that the series $x_1+x_2+x_3+\cdots$ diverges. Is it necessary true that the series $\sum_{n=2}^{\infty}{\min \left\{ x_n,\frac{1}{n\log (n)}\right\} }$ diverges?

2001 Romania National Olympiad, 3

Let $f:[-1,1]\rightarrow\mathbb{R}$ be a continuous function. Show that: a) if $\int_0^1 f(\sin (x+\alpha ))\, dx=0$, for every $\alpha\in\mathbb{R}$, then $f(x)=0,\ \forall x\in [-1,1]$. b) if $\int_0^1 f(\sin (nx))\, dx=0$, for every $n\in\mathbb{Z}$, then $f(x)=0,\ \forall x\in [-1,1]$.

1971 Miklós Schweitzer, 10

Let $ \{\phi_n(x) \}$ be a sequence of functions belonging to $ L^2(0,1)$ and having norm less that $ 1$ such that for any subsequence $ \{\phi_{n_k}(x) \}$ the measure of the set \[ \{x \in (0,1) : \;|\frac{1}{\sqrt{N}} \sum _{k=1}^N \phi_{n_k}(x)| \geq y\ \}\] tends to $ 0$ as $ y$ and $ N$ tend to infinity. Prove that $ \phi_n$ tends to $ 0$ weakly in the function space $ L^2(0,1).$ [i]F. Moricz[/i]

2010 Gheorghe Vranceanu, 2

Let be a natural number $ n, $ a number $ t\in (0,1) $ and $ n+1 $ numbers $ a_0\ge a_1\ge a_2\ge\cdots\ge a_n\ge 0. $ Prove the following matrix inequality: $$ \begin{vmatrix}\frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0& 0 & \cdots & 0 & 0 \\ 0 & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 \\ a_0 & a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{vmatrix}^2\le a_0^2\left( 1+\frac{1}{t^2} \right) $$

2011 Laurențiu Duican, 3

Let be two continuous functions $ f:[0,\infty )\longrightarrow\mathbb{R} $ satisfying the following equations: $$ \lim_{x\to\infty } f(x) =\infty =\lim_{x\to\infty } g(x) $$ Prove that there exists a divergent sequence $ \left( k_n \right)_{n\ge 1} $ of nonnegative integers which has the property that each term (function) of the sequence of functions $ \left( h_{n} \right)_{n\ge 1} :[0,\infty )\longrightarrow\mathbb{R} $ defined as $$ h_{n} (x) =f\left( k_n+g(x) -\left\lfloor g(x) \right\rfloor \right) , $$ doesn't have limit at $ \infty . $ [i]Romeo Ilie[/i]

2006 IMC, 6

Find all sequences $a_{0}, a_{1},\ldots, a_{n}$ of real numbers such that $a_{n}\neq 0$, for which the following statement is true: If $f: \mathbb{R}\to\mathbb{R}$ is an $n$ times differentiable function and $x_{0}<x_{1}<\ldots <x_{n}$ are real numbers such that $f(x_{0})=f(x_{1})=\ldots =f(x_{n})=0$ then there is $h\in (x_{0}, x_{n})$ for which \[a_{0}f(h)+a_{1}f'(h)+\ldots+a_{n}f^{(n)}(h)=0.\]

1950 Miklós Schweitzer, 9

Find the necessary and sufficient conditions for two conics that every tangent to one of them contains a real point of the other.

1960 Miklós Schweitzer, 7

[b]7.[/b] Define the generalized derivative at $x_0$ of the function $f(x)$ by $\lim_{h \to 0} 2 \frac{ \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt - f(x_0)}{h}$ Show that there exists a function, continuous everywhere, which is nowhere differentiable in this general sense [b]( R. 8)[/b]