This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 58

PEN A Problems, 107

Find four positive integers, each not exceeding $70000$ and each having more than $100$ divisors.

2010 Balkan MO Shortlist, A1

Let $a,b$ and $c$ be positive real numbers. Prove that \[ \frac{a^2b(b-c)}{a+b}+\frac{b^2c(c-a)}{b+c}+\frac{c^2a(a-b)}{c+a} \ge 0. \]

2010 ISI B.Stat Entrance Exam, 1

Let $a_1,a_2,\cdots, a_n$ and $b_1,b_2,\cdots, b_n$ be two permutations of the numbers $1,2,\cdots, n$. Show that \[\sum_{i=1}^n i(n+1-i) \le \sum_{i=1}^n a_ib_i \le \sum_{i=1}^n i^2\]

1978 IMO Longlists, 16

Let $f$ be an injective function from ${1,2,3,\ldots}$ in itself. Prove that for any $n$ we have: $\sum_{k=1}^{n} f(k)k^{-2} \geq \sum_{k=1}^{n} k^{-1}.$

2010 Postal Coaching, 5

For any positive real numbers $a, b, c$, prove that \[\sum_{cyclic} \frac{(b + c)(a^4 - b^2 c^2 )}{ab + 2bc + ca} \ge 0\]

2004 National Olympiad First Round, 4

What is the difference between the maximum value and the minimum value of the sum $a_1 + 2a_2 + 3a_3 + 4a_4 + 5a_5$ where $\{a_1,a_2,a_3,a_4,a_5\} = \{1,2,3,4,5\}$? $ \textbf{(A)}\ 20 \qquad\textbf{(B)}\ 15 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 0 $

2005 China Team Selection Test, 1

Let $a_{1}$, $a_{2}$, …, $a_{6}$; $b_{1}$, $b_{2}$, …, $b_{6}$ and $c_{1}$, $c_{2}$, …, $c_{6}$ are all permutations of $1$, $2$, …, $6$, respectively. Find the minimum value of $\sum_{i=1}^{6}a_{i}b_{i}c_{i}$.

2012 Balkan MO Shortlist, A1

Prove that \[\sum_{cyc}(x+y)\sqrt{(z+x)(z+y)} \geq 4(xy+yz+zx),\] for all positive real numbers $x,y$ and $z$.

2010 Macedonia National Olympiad, 2

Let $a,b,c$ be positive real numbers for which $a+b+c=3$. Prove the inequality \[\frac{a^3+2}{b+2}+\frac{b^3+2}{c+2}+\frac{c^3+2}{a+2}\ge3\]

2014 ISI Entrance Examination, 7

Let $f: [0,\infty)\to \mathbb{R}$ a non-decreasing function. Then show this inequality holds for all $x,y,z$ such that $0\le x<y<z$. \begin{align*} & (z-x)\int_{y}^{z}f(u)\,\mathrm{du}\ge (z-y)\int_{x}^{z}f(u)\,\mathrm{du} \end{align*}

1975 IMO Shortlist, 2

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

2010 Turkey Junior National Olympiad, 4

Prove that \[ a^2b^2(a^2+b^2-2) \geq (a+b)(ab-1) \] for all positive real numbers $a$ and $b.$

2005 Italy TST, 2

$(a)$ Prove that in a triangle the sum of the distances from the centroid to the sides is not less than three times the inradius, and find the cases of equality. $(b)$ Determine the points in a triangle that minimize the sum of the distances to the sides.

2013 India IMO Training Camp, 1

Let $a, b, c$ be positive real numbers such that $a + b + c = 1$. If $n$ is a positive integer then prove that \[ \frac{(3a)^n}{(b + 1)(c + 1)} + \frac{(3b)^n}{(c + 1)(a + 1)} + \frac{(3c)^n}{(a + 1)(b + 1)} \ge \frac{27}{16} \,. \]

2006 Balkan MO, 1

Let $ a$, $ b$, $ c$ be positive real numbers. Prove the inequality \[ \frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\geq \frac{3}{1+abc}. \]

1983 IMO Longlists, 66

Let $ a$, $ b$ and $ c$ be the lengths of the sides of a triangle. Prove that \[ a^{2}b(a \minus{} b) \plus{} b^{2}c(b \minus{} c) \plus{} c^{2}a(c \minus{} a)\ge 0. \] Determine when equality occurs.

2005 Italy TST, 2

$(a)$ Prove that in a triangle the sum of the distances from the centroid to the sides is not less than three times the inradius, and find the cases of equality. $(b)$ Determine the points in a triangle that minimize the sum of the distances to the sides.

2009 Moldova Team Selection Test, 2

[color=darkred]Let $ m,n\in \mathbb{N}$, $ n\ge 2$ and numbers $ a_i > 0$, $ i \equal{} \overline{1,n}$, such that $ \sum a_i \equal{} 1$. Prove that $ \small{\dfrac{a_1^{2 \minus{} m} \plus{} a_2 \plus{} ... \plus{} a_{n \minus{} 1}}{1 \minus{} a_1} \plus{} \dfrac{a_2^{2 \minus{} m} \plus{} a_3 \plus{} ... \plus{} a_n}{1 \minus{} a_1} \plus{} ... \plus{} \dfrac{a_n^{2 \minus{} m} \plus{} a_1 \plus{} ... \plus{} a_{n \minus{} 2}}{1 \minus{} a_1}\ge n \plus{} \dfrac{n^m \minus{} n}{n \minus{} 1}}$[/color]

2008 Pan African, 1

Let $x$ and $y$ be two positive reals. Prove that $xy\le\frac{x^{n+2}+y^{n+2}}{x^n+y^n}$ for all non-negative integers $n$.

2008 China Team Selection Test, 3

Let $ 0 < x_{1}\leq\frac {x_{2}}{2}\leq\cdots\leq\frac {x_{n}}{n}, 0 < y_{n}\leq y_{n \minus{} 1}\leq\cdots\leq y_{1},$ Prove that $ (\sum_{k \equal{} 1}^{n}x_{k}y_{k})^2\leq(\sum_{k \equal{} 1}^{n}y_{k})(\sum_{k \equal{} 1}^{n}(x_{k}^2 \minus{} \frac {1}{4}x_{k}x_{k \minus{} 1})y_{k}).$ where $ x_{0} \equal{} 0.$

2005 China Team Selection Test, 1

Let $a_{1}$, $a_{2}$, …, $a_{6}$; $b_{1}$, $b_{2}$, …, $b_{6}$ and $c_{1}$, $c_{2}$, …, $c_{6}$ are all permutations of $1$, $2$, …, $6$, respectively. Find the minimum value of $\sum_{i=1}^{6}a_{i}b_{i}c_{i}$.

2010 Romania Team Selection Test, 2

Let $n$ be a positive integer number and let $a_1, a_2, \ldots, a_n$ be $n$ positive real numbers. Prove that $f : [0, \infty) \rightarrow \mathbb{R}$, defined by \[f(x) = \dfrac{a_1 + x}{a_2 + x} + \dfrac{a_2 + x}{a_3 + x} + \cdots + \dfrac{a_{n-1} + x}{a_n + x} + \dfrac{a_n + x}{a_1 + x}, \] is a decreasing function. [i]Dan Marinescu et al.[/i]

2001 Austrian-Polish Competition, 5

The fields of the $8\times 8$ chessboard are numbered from $1$ to $64$ in the following manner: For $i=1,2,\cdots,63$ the field numbered by $i+1$ can be reached from the field numbered by $i$ by one move of the knight. Let us choose positive real numbers $x_{1},x_{2},\cdots,x_{64}$. For each white field numbered by $i$ define the number $y_{i}=1+x_{i}^{2}-\sqrt[3]{x_{i-1}^{2}x_{i+1}}$ and for each black field numbered by $j$ define the number $y_{j}=1+x_{j}^{2}-\sqrt[3]{x_{j-1}x_{j+1}^{2}}$ where $x_{0}=x_{64}$ and $x_{1}=x_{65}$. Prove that \[\sum_{i=1}^{64}y_{i}\geq 48\]

2005 District Olympiad, 1

a) Prove that if $x,y>0$ then \[ \frac x{y^2} + \frac y{x^2} \geq \frac 1x + \frac 1y. \] b) Prove that if $a,b,c$ are positive real numbers, then \[ \frac {a+b}{c^2} + \frac {b+c}{a^2} + \frac {c+a}{b^2} \geq 2 \left( \frac 1a + \frac 1b + \frac 1c \right). \]

2015 India Regional MathematicaI Olympiad, 1

Let $ABCD$ be a convex quadrilateral with $AB=a$, $BC=b$, $CD=c$ and $DA=d$. Suppose \[a^2+b^2+c^2+d^2=ab+bc+cd+da,\] and the area of $ABCD$ is $60$ sq. units. If the length of one of the diagonals is $30$ units, determine the length of the other diagonal.