Found problems: 1342
2016 AMC 10, 10
A rug is made with three different colors as shown. The areas of the three differently colored regions form an arithmetic progression. The inner rectangle is one foot wide, and each of the two shaded regions is $1$ foot wide on all four sides. What is the length in feet of the inner rectangle?
[asy]
size(6cm);
defaultpen(fontsize(9pt));
path rectangle(pair X, pair Y){
return X--(X.x,Y.y)--Y--(Y.x,X.y)--cycle;
}
filldraw(rectangle((0,0),(7,5)),gray(0.5));
filldraw(rectangle((1,1),(6,4)),gray(0.75));
filldraw(rectangle((2,2),(5,3)),white);
label("$1$",(0.5,2.5));
draw((0.3,2.5)--(0,2.5),EndArrow(TeXHead));
draw((0.7,2.5)--(1,2.5),EndArrow(TeXHead));
label("$1$",(1.5,2.5));
draw((1.3,2.5)--(1,2.5),EndArrow(TeXHead));
draw((1.7,2.5)--(2,2.5),EndArrow(TeXHead));
label("$1$",(4.5,2.5));
draw((4.5,2.7)--(4.5,3),EndArrow(TeXHead));
draw((4.5,2.3)--(4.5,2),EndArrow(TeXHead));
label("$1$",(4.1,1.5));
draw((4.1,1.7)--(4.1,2),EndArrow(TeXHead));
draw((4.1,1.3)--(4.1,1),EndArrow(TeXHead));
label("$1$",(3.7,0.5));
draw((3.7,0.7)--(3.7,1),EndArrow(TeXHead));
draw((3.7,0.3)--(3.7,0),EndArrow(TeXHead));
[/asy]
$\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 6 \qquad \textbf{(E) }8$
1985 IMO Longlists, 75
Let $ABCD$ be a rectangle, $AB = a, BC = b$. Consider the family of parallel and equidistant straight lines (the distance between two consecutive lines being $d$) that are at an the angle $\phi, 0 \leq \phi \leq 90^{\circ},$ with respect to $AB$. Let $L$ be the sum of the lengths of all the segments intersecting the rectangle. Find:
[i](a)[/i] how $L $ varies,
[i](b)[/i] a necessary and sufficient condition for $L$ to be a constant, and
[i](c)[/i] the value of this constant.
2005 USA Team Selection Test, 1
Let $n$ be an integer greater than $1$. For a positive integer $m$, let $S_{m}= \{ 1,2,\ldots, mn\}$. Suppose that there exists a $2n$-element set $T$ such that
(a) each element of $T$ is an $m$-element subset of $S_{m}$;
(b) each pair of elements of $T$ shares at most one common element;
and
(c) each element of $S_{m}$ is contained in exactly two elements of $T$.
Determine the maximum possible value of $m$ in terms of $n$.
1988 AMC 12/AHSME, 6
A figure is an equiangular parallelogram if and only if it is a
$ \textbf{(A)}\ \text{rectangle}\qquad\textbf{(B)}\ \text{regular polygon}\qquad\textbf{(C)}\ \text{rhombus}\qquad\textbf{(D)}\ \text{square}\qquad\textbf{(E)}\ \text{trapezoid} $
2018 HMNT, 7
A $5\times5$ grid of squares is filled with integers. Call a rectangle [i]corner-odd[/i] if its sides are grid lines and the sum of the integers in its four corners is an odd number. What is the maximum possible number of corner-odd rectangles within the grid?
Note: A rectangles must have four distinct corners to be considered [i]corner-odd[/i]; i.e. no $1\times k$ rectangle can be [i]corner-odd[/i] for any positive integer $k$.
2019 Korea - Final Round, 2
For a rectangle $ABCD$ which is not a square, there is $O$ such that $O$ is on the perpendicular bisector of $BD$ and $O$ is in the interior of $\triangle BCD$. Denote by $E$ and $F$ the second intersections of the circle centered at $O$ passing through $B, D$ and $AB, AD$. $BF$ and $DE$ meets at $G$, and $X, Y, Z$ are the foots of the perpendiculars from $G$ to $AB, BD, DA$. $L, M, N$ are the foots of the perpendiculars from $O$ to $CD, BD, BC$. $XY$ and $ML$ meets at $P$, $YZ$ and $MN$ meets at $Q$. Prove that $BP$ and $DQ$ are parallel.
2023 AIME, 14
A cube-shaped container has vertices $A$, $B$, $C$, and $D$ where $\overline{AB}$ and $\overline{CD}$ are parallel edges of the cube, and $\overline{AC}$ and $\overline{BD}$ are diagonals of the faces of the cube. Vertex $A$ of the cube is set on a horizontal plane $\mathcal P$ so that the plane of the rectangle $ABCD$ is perpendicular to $\mathcal P$, vertex $B$ is $2$ meters above $\mathcal P$, vertex $C$ is $8$ meters above $\mathcal P$, and vertex $D$ is $10$ meters above $\mathcal P$. The cube contains water whose surface is $7$ meters above $\mathcal P$. The volume of the water is $\tfrac mn$ cubic meters, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
[asy]
size(250);
defaultpen(linewidth(0.6));
pair A = origin, B = (6,3), X = rotate(40)*B, Y = rotate(70)*X, C = X+Y, Z = X+B, D = B+C, W = B+Y;
pair P1 = 0.8*C+0.2*Y, P2 = 2/3*C+1/3*X, P3 = 0.2*D+0.8*Z, P4 = 0.63*D+0.37*W;
pair E = (-20,6), F = (-6,-5), G = (18,-2), H = (9,8);
filldraw(E--F--G--H--cycle,rgb(0.98,0.98,0.2));
fill(A--Y--P1--P4--P3--Z--B--cycle,rgb(0.35,0.7,0.9));
draw(A--B--Z--X--A--Y--C--X^^C--D--Z);
draw(P1--P2--P3--P4--cycle^^D--P4);
dot("$A$",A,S);
dot("$B$",B,S);
dot("$C$",C,N);
dot("$D$",D,N);
label("$\mathcal P$",(-13,4.5));
[/asy]
Novosibirsk Oral Geo Oly VIII, 2021.1
Cut the $9 \times 10$ grid rectangle along the grid lines into several squares so that there are exactly two of them with odd sidelengths.
2024 Junior Balkan Team Selection Tests - Moldova, 11
A rectangle of dimensions $2024 \times 2023$ is filled with pieces of the following types:
[asy]
size(200);
// Figure (A)
draw((0,0)--(4,0)--(4,1)--(0,1)--cycle);
draw((1,0)--(1,1));
draw((2,0)--(2,1));
draw((3,0)--(3,1));
// Figure (B)
draw((6,0)--(8,0)--(8,2)--(6,2)--cycle);
draw((7,0)--(7,2));
draw((6,1)--(8,1));
// Figure (C)
draw((10,0)--(12,0)--(12,1)--(11,1)--(11,2)--(9,2)--(9,1)--(10,1)--cycle);
draw((10,0)--(10,1));
draw((11,0)--(11,1));
draw((10,1)--(11,1));
draw((9,1)--(9,2));
draw((10,1)--(10,2));
draw((11,0)--(12,0));
draw((10,1)--(12,1));
// Labeling
label("(A)", (2, -0.5));
label("(B)", (7, -0.5));
label("(C)", (10.5, -0.5));
[/asy]
Each piece can be turned arround, and each square has side length $1$.
Is it possible to use exactly 2023 pieces of type $(A)$?
2009 Czech and Slovak Olympiad III A, 2
Rectangle $ABCD$ is inscribed in circle $O$. Let the projections of a point $P$ on minor arc $CD$ onto $AB,AC,BD$ be $K,L,M$, respectively. Prove that $\angle LKM=45$if and only if $ABCD$ is a square.
1999 Mongolian Mathematical Olympiad, Problem 3
At each vertex of a $4\times5$ rectangle there is a house. Find the path of the minimum length connecting all these houses.
2005 Taiwan TST Round 1, 1
More than three quarters of the circumference of a circle is colored black. Prove that there exists a rectangle such that all of its vertices are black.
Actually the result holds if "three quarters" is replaced by "one half"...
2025 Israel National Olympiad (Gillis), P4
A $100\times \sqrt{3}$ rectangular table is given. What is the minimum number of disk-shaped napkins of radius $1$ required to cover the table completely?
[i]Remark:[/i] The napkins are allowed to overlap and protrude the table's edges.
2019 Harvard-MIT Mathematics Tournament, 2
In rectangle $ABCD$, points $E$ and $F$ lie on sides $AB$ and $CD$ respectively such that both $AF$ and $CE$ are perpendicular to diagonal $BD$. Given that $BF$ and $DE$ separate $ABCD$ into three polygons with equal area, and that $EF = 1$, find the length of $BD$.
Geometry Mathley 2011-12, 8.1
Let $ABC$ be a triangle and $ABDE, BCFZ, CAKL$ be three similar rectangles constructed externally of the triangle. Let $A'$ be the intersection of $EF$ and $ZK, B'$ the intersection of $KZ$ and $DL$, and $C'$ the intersection of $DL$ and $EF$. Prove that $AA'$ passes through the midpoint of the line segment $B'C'$.
Kostas Vittas
2006 Irish Math Olympiad, 3
Prove that a square of side 2.1 units can be completely covered by seven squares of side 1 unit.
Extra: Try to prove that 7 is the minimal amount.
2021 Bundeswettbewerb Mathematik, 4
In the Cartesian plane, a line segment is called [i]tame[/i] if it lies parallel to one of the coordinate axes and its distance to this axis is an integer. Otherwise it is called [i]wild[/i].
Let $m$ and $n$ be odd positive integers. The rectangle with vertices $(0,0),(m,0),(m,n)$ and $(0,n)$ is partitioned into finitely many triangles. Let $M$ be the set of these triangles. Assume that
(1) Each triangle from $M$ has at least one tame side.
(2) For each tame side of a triangle from $M$, the corresponding altitude has length $1$.
(3) Each wild side of a triangle from $M$ is a common side of exactly two triangles from $M$.
Show that at least two triangles from $M$ have two tame sides each.
1996 Romania National Olympiad, 3
Let $AB CD$ be a rectangle with $AB=1$. If $m ( \angle BDC) = 82^o30'$, compute the length of$ BD$ and the cosine of $82^o30'$.
2000 France Team Selection Test, 1
Points $P,Q,R,S$ lie on a circle and $\angle PSR$ is right. $H,K$ are the projections of $Q$ on lines $PR,PS$. Prove that $HK$ bisects segment $ QS$.
2021 AMC 10 Fall, 25
A rectangle with side lengths $1{ }$ and $3,$ a square with side length $1,$ and a rectangle $R$ are inscribed inside a larger square as shown. The sum of all possible values for the area of $R$ can be written in the form $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. What is $m+n?$
[asy]
size(8cm);
draw((0,0)--(10,0));
draw((0,0)--(0,10));
draw((10,0)--(10,10));
draw((0,10)--(10,10));
draw((1,6)--(0,9));
draw((0,9)--(3,10));
draw((3,10)--(4,7));
draw((4,7)--(1,6));
draw((0,3)--(1,6));
draw((1,6)--(10,3));
draw((10,3)--(9,0));
draw((9,0)--(0,3));
draw((6,13/3)--(10,22/3));
draw((10,22/3)--(8,10));
draw((8,10)--(4,7));
draw((4,7)--(6,13/3));
label("$3$",(9/2,3/2),N);
label("$3$",(11/2,9/2),S);
label("$1$",(1/2,9/2),E);
label("$1$",(19/2,3/2),W);
label("$1$",(1/2,15/2),E);
label("$1$",(3/2,19/2),S);
label("$1$",(5/2,13/2),N);
label("$1$",(7/2,17/2),W);
label("$R$",(7,43/6),W);
[/asy]
$(\textbf{A})\: 14\qquad(\textbf{B}) \: 23\qquad(\textbf{C}) \: 46\qquad(\textbf{D}) \: 59\qquad(\textbf{E}) \: 67$
2018 NZMOC Camp Selection Problems, 3
Show that amongst any $ 8$ points in the interior of a $7 \times 12$ rectangle, there exists a pair whose distance is less than $5$.
Note: The interior of a rectangle excludes points lying on the sides of the rectangle.
2008 Purple Comet Problems, 9
One container of paint is exactly enough to cover the inside of an old rectangle which is three times as long as it is wide. If we make a new rectangle by shortening the old rectangle by $18$ feet and widening it by $8$ feet as shown below, one container of paint is also exactly enough to cover the inside of the new rectangle. Find the length in feet of the perimeter of the new rectangle.
[asy]
size(250);
defaultpen(linewidth(0.8));
draw((-2,0)--(-2,5)--(13,5)--(13,0)--cycle^^(16,-1)--(16,6)--(27,6)--(27,-1)--cycle^^(9,5)--(9,0)^^(16,4)--(27,4));
path rect1=(13,5)--(13,0)--(9,0)--(9,5)--cycle,rect2=(16,6)--(16,4)--(27,4)--(27,6)--cycle;
fill(rect1,lightgray);
fill(rect2,lightgray);
draw(rect1^^rect2);
[/asy]
2003 AMC 10, 6
Many television screens are rectangles that are measured by the length of their diagonals. The ratio of the horizontal length to the height in a standard television screen is $ 4 : 3$. The horizontal length of a “$ 27$-inch” television screen is closest, in inches, to which of the following?
[asy]import math;
unitsize(7mm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
draw((0,0)--(4,0)--(4,3)--(0,3)--(0,0)--(4,3));
fill((0,0)--(4,0)--(4,3)--cycle,mediumgray);
label(rotate(aTan(3.0/4.0))*"Diagonal",(2,1.5),NW);
label(rotate(90)*"Height",(4,1.5),E);
label("Length",(2,0),S);[/asy]$ \textbf{(A)}\ 20 \qquad
\textbf{(B)}\ 20.5 \qquad
\textbf{(C)}\ 21 \qquad
\textbf{(D)}\ 21.5 \qquad
\textbf{(E)}\ 22$
2017 AMC 10, 15
Rectangle $ABCD$ has $AB=3$ and $BC=4.$ Point $E$ is the foot of the perpendicular from $B$ to diagonal $\overline{AC}.$ What is the area of $\triangle ADE?$
$\textbf{(A)} \text{ 1} \qquad \textbf{(B)} \text{ }\frac{42}{25} \qquad \textbf{(C)} \text{ }\frac{28}{15} \qquad \textbf{(D)} \text{ 2} \qquad \textbf{(E)} \text{ }\frac{54}{25}$
2012 Argentina Cono Sur TST, 1
Sofía colours $46$ cells of a $9 \times 9$ board red. If Pedro can find a $2 \times 2$ square from the board that has $3$ or more red cells, he wins; otherwise, Sofía wins. Determine the player with the winning strategy.