Found problems: 307
1985 IMO Longlists, 33
A sequence of polynomials $P_m(x, y, z), m = 0, 1, 2, \cdots$, in $x, y$, and $z$ is defined by $P_0(x, y, z) = 1$ and by
\[P_m(x, y, z) = (x + z)(y + z)P_{m-1}(x, y, z + 1) - z^2P_{m-1}(x, y, z)\]
for $m > 0$. Prove that each $P_m(x, y, z)$ is symmetric, in other words, is unaltered by any permutation of $x, y, z.$
1989 IMO Longlists, 55
The set $ \{a_0, a_1, \ldots, a_n\}$ of real numbers satisfies the following conditions:
[b](i)[/b] $ a_0 \equal{} a_n \equal{} 0,$
[b](ii)[/b] for $ 1 \leq k \leq n \minus{} 1,$ \[ a_k \equal{} c \plus{} \sum^{n\minus{}1}_{i\equal{}k} a_{i\minus{}k} \cdot \left(a_i \plus{} a_{i\plus{}1} \right)\]
Prove that $ c \leq \frac{1}{4n}.$
2020 Paraguay Mathematical Olympiad, 2
Laura is putting together the following list: $a_0, a_1, a_2, a_3, a_4, ..., a_n$, where $a_0 = 3$ and $a_1 = 4$.
She knows that the following equality holds for any value of $n$ integer greater than or equal to $1$:
$$a_n^2-2a_{n-1}a_{n+1} =(-2)^n.$$Laura calculates the value of $a_4$. What value does it get?
2019 Saudi Arabia Pre-TST + Training Tests, 3.3
Define sequence of positive integers $(a_n)$ as $a_1 = a$ and $a_{n+1} = a^2_n + 1$ for $n \ge 1$. Prove that there is no index $n$ for which $$\prod_{k=1}^{n} \left(a^2_k + a_k + 1\right)$$ is a perfect square.
1984 IMO Shortlist, 19
The harmonic table is a triangular array:
$1$
$\frac 12 \qquad \frac 12$
$\frac 13 \qquad \frac 16 \qquad \frac 13$
$\frac 14 \qquad \frac 1{12} \qquad \frac 1{12} \qquad \frac 14$
Where $a_{n,1} = \frac 1n$ and $a_{n,k+1} = a_{n-1,k} - a_{n,k}$ for $1 \leq k \leq n-1.$ Find the harmonic mean of the $1985^{th}$ row.
1967 IMO, 6
In a sports meeting a total of $m$ medals were awarded over $n$ days. On the first day one medal and $\frac{1}{7}$ of the remaining medals were awarded. On the second day two medals and $\frac{1}{7}$ of the remaining medals were awarded, and so on. On the last day, the remaining $n$ medals were awarded. How many medals did the meeting last, and what was the total number of medals ?
2007 Germany Team Selection Test, 1
A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula
\[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0;
\]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large.
[i]Proposed by Harmel Nestra, Estionia[/i]
2013 Denmark MO - Mohr Contest, 3
A sequence $x_0, x_1, x_2, . . .$ is given by $x_0 = 8$ and $x_{n+1} =\frac{1 + x_n}{1- x_n}$ for $n = 0, 1, 2, . . . .$ Determine the number $x_{2013}$.
1967 IMO Longlists, 24
In a sports meeting a total of $m$ medals were awarded over $n$ days. On the first day one medal and $\frac{1}{7}$ of the remaining medals were awarded. On the second day two medals and $\frac{1}{7}$ of the remaining medals were awarded, and so on. On the last day, the remaining $n$ medals were awarded. How many medals did the meeting last, and what was the total number of medals ?
2020 China Second Round Olympiad, 3
Let $a_1=1,$ $a_2=2,$ $a_n=2a_{n-1}+a_{n-2},$ $n=3,4,\cdots.$ Prove that for any integer $n\geq5,$ $a_n$ has at least one prime factor $p,$ such that $p\equiv 1\pmod{4}.$
1999 Austrian-Polish Competition, 5
A sequence of integers $(a_n)$ satisfies $a_{n+1} = a_n^3 + 1999$ for $n = 1,2,....$
Prove that there exists at most one $n$ for which $a_n$ is a perfect square.
1985 All Soviet Union Mathematical Olympiad, 414
Solve the equation ("$2$" encounters $1985$ times):
$$\dfrac{x}{2+ \dfrac{x}{2+\dfrac{x}{2+... \dfrac{x}{2+\sqrt {1+x}}}}}=1$$
2014 Federal Competition For Advanced Students, 3
Let $a_n$ be a sequence defined by some $a_0$ and the recursion $a_{n+1} = a_n + 2 \cdot 3^n$ for $n \ge 0$.
Determine all rational values of $a_0$ such that $a^j_k / a^k_j$ is an integer for all integers $j$ and $k$ with $0 < j < k$.
1980 IMO Shortlist, 19
Find the greatest natural number $n$ such there exist natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and natural $a_{1}< a_{2}< \ldots < a_{n-1}$ satisfying the following equations for $i =1,2,\ldots,n-1$: \[x_{1}x_{2}\ldots x_{n}= 1980 \quad \text{and}\quad x_{i}+\frac{1980}{x_{i}}= a_{i}.\]
1995 Tuymaada Olympiad, 2
Let $x_1=a, x_2=a^{x_1}, ..., x_n=a^{x_{n-1}}$ where $a>1$. What is the maximum value of $a$ for which lim exists $\lim_{n\to \infty} x_n$ and what is this limit?
1972 IMO Shortlist, 8
Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.
2015 Bulgaria National Olympiad, 3
The sequence $a_1, a_2,...$ is defined by the equalities $a_1 = 2, a_2 = 12$ and $a_{n+1} = 6a_n-a_{n-1}$ for every positive integer $n \ge 2$. Prove that no member of this sequence is equal to a perfect power (greater than one) of a positive integer.
2024 Czech and Slovak Olympiad III A, 5
Let $(a_k)^{\infty}_{k=0}$ be a sequence of real numbers such that if $k$ is a non-negative integer, then
$$a_{k+1} = 3a_k - \lfloor 2a_k \rfloor - \lfloor a_k \rfloor.$$
Definitely all positive integers $n$ such that if $a_0 = 1/n$, then this sequence is constant after a certain term.
1992 IMO Shortlist, 2
Let $ \mathbb{R}^\plus{}$ be the set of all non-negative real numbers. Given two positive real numbers $ a$ and $ b,$ suppose that a mapping $ f: \mathbb{R}^\plus{} \mapsto \mathbb{R}^\plus{}$ satisfies the functional equation:
\[ f(f(x)) \plus{} af(x) \equal{} b(a \plus{} b)x.\]
Prove that there exists a unique solution of this equation.
2015 Balkan MO Shortlist, N2
Sequence $(a_n)_{n\geq 0}$ is defined as $a_{0}=0, a_1=1, a_2=2, a_3=6$,
and $ a_{n+4}=2a_{n+3}+a_{n+2}-2a_{n+1}-a_n, n\geq 0$.
Prove that $n^2$ divides $a_n$ for infinite $n$.
(Romania)
2016 India IMO Training Camp, 1
Let $n$ be a natural number. We define sequences $\langle a_i\rangle$ and $\langle b_i\rangle$ of integers as follows. We let $a_0=1$ and $b_0=n$. For $i>0$, we let $$\left( a_i,b_i\right)=\begin{cases} \left(2a_{i-1}+1,b_{i-1}-a_{i-1}-1\right) & \text{if } a_{i-1}<b_{i-1},\\
\left( a_{i-1}-b_{i-1}-1,2b_{i-1}+1\right) & \text{if } a_{i-1}>b_{i-1},\\
\left(a_{i-1},b_{i-1}\right) & \text{if } a_{i-1}=b_{i-1}.\end{cases}$$
Given that $a_k=b_k$ for some natural number $k$, prove that $n+3$ is a power of two.
1979 Chisinau City MO, 170
The numbers $a_1,a_2,...,a_n$ ( $n\ge 3$) satisfy the relations $$a_1=a_n = 0, a_{k-1}+ a_{k+1}\le 2a_k \,\,\, (k = 2, 3,..., n-1)$$ Prove that the numbers $a_1,a_2,...,a_n$ are non-negative.
1964 Vietnam National Olympiad, 4
Define the sequence of positive integers $f_n$ by $f_0 = 1, f_1 = 1, f_{n+2} = f_{n+1} + f_n$. Show that $f_n =\frac{ (a^{n+1} - b^{n+1})}{\sqrt5}$, where $a, b$ are real numbers such that $a + b = 1, ab = -1$ and $a > b$.
1988 Swedish Mathematical Competition, 6
The sequence $(a_n)$ is defined by $a_1 = 1$ and $a_{n+1} = \sqrt{a_n^2 +\frac{1}{a_n}}$ for $n \ge 1$.
Prove that there exists $a$ such that $\frac{1}{2} \le \frac{a_n}{n^a} \le 2$ for $n \ge 1$.
2012 China Northern MO, 5
Let $\{a_n\}$ be the sequance with $a_0=0$, $a_n=\frac{1}{a_{n-1}-2}$ ($n\in N_+$). Select an arbitrary term $a_k$ in the sequence $\{a_n\}$ and construct the sequence $\{b_n\}$: $b_0=a_k$, $b_n=\frac{2b_{n-1}+1} {b_{n-1}}$ ($n\in N_+$) . Determine whether the sequence $\{b_n\}$ is a finite sequence or an infinite sequence and give proof.