Found problems: 1001
2011 Tuymaada Olympiad, 2
Circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$, and $M$ is the midpoint of $AB$. Points $S_1$ and $S_2$ lie on the line $AB$ (but not between $A$ and $B$). The tangents drawn from $S_1$ to $\omega_1$ touch it at $X_1$ and $Y_1$, and the tangents drawn from $S_2$ to $\omega_2$ touch it at $X_2$ and $Y_2$. Prove that if the line $X_1X_2$ passes through $M$, then line $Y_1Y_2$ also passes through $M$.
2004 Harvard-MIT Mathematics Tournament, 2
How many ways can you mark 8 squares of an $8\times8$ chessboard so that no two marked squares are in the same row or column, and none of the four corner squares is marked? (Rotations and reflections are considered different.)
2005 Rioplatense Mathematical Olympiad, Level 3, 2
In trapezoid $ABCD$, the sum of the lengths of the bases $AB$ and $CD$ is equal to the length of the diagonal $BD$. Let $M$ denote the midpoint of $BC$, and let $E$ denote the reflection of $C$ about the line $DM$. Prove that $\angle AEB=\angle ACD$.
2014 Taiwan TST Round 2, 1
Let $ABC$ be a triangle with incenter $I$ and circumcenter $O$. A straight line $L$ is parallel to $BC$ and tangent to the incircle. Suppose $L$ intersects $IO$ at $X$, and select $Y$ on $L$ such that $YI$ is perpendicular to $IO$. Prove that $A$, $X$, $O$, $Y$ are cyclic.
[i]Proposed by Telv Cohl[/i]
1967 AMC 12/AHSME, 40
Located inside equilateral triangle $ABC$ is a point $P$ such that $PA=8$, $PB=6$, and $PC=10$. To the nearest integer the area of triangle $ABC$ is:
$\textbf{(A)}\ 159\qquad
\textbf{(B)}\ 131\qquad
\textbf{(C)}\ 95\qquad
\textbf{(D)}\ 79\qquad
\textbf{(E)}\ 50$
2009 Balkan MO Shortlist, G6
Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.
2012 Romania Team Selection Test, 2
Let $ABCD$ be a convex circumscribed quadrilateral such that $\angle ABC+\angle ADC<180^{\circ}$ and $\angle ABD+\angle ACB=\angle ACD+\angle ADB$. Prove that one of the diagonals of quadrilateral $ABCD$ passes through the other diagonals midpoint.
2014 Mexico National Olympiad, 4
Problem 4
Let $ABCD$ be a rectangle with diagonals $AC$ and $BD$. Let $E$ be the intersection of the bisector of $\angle CAD$ with segment $CD$, $F$ on $CD$ such that $E$ is midpoint of $DF$, and $G$ on $BC$ such that $BG = AC$ (with $C$ between $B$ and $G$). Prove that the circumference through $D$, $F$ and $G$ is tangent to $BG$.
2021 Taiwan TST Round 2, G
Let $ABC$ be a triangle with circumcircle $\Gamma$, and points $E$ and $F$ are chosen from sides $CA$, $AB$, respectively. Let the circumcircle of triangle $AEF$ and $\Gamma$ intersect again at point $X$. Let the circumcircles of triangle $ABE$ and $ACF$ intersect again at point $K$. Line $AK$ intersect with $\Gamma$ again at point $M$ other than $A$, and $N$ be the reflection point of $M$ with respect to line $BC$. Let $XN$ intersect with $\Gamma$ again at point $S$ other that $X$.
Prove that $SM$ is parallel to $BC$.
[i] Proposed by Ming Hsiao[/i]
2013 Pan African, 3
Let $ABCDEF$ be a convex hexagon with $\angle A= \angle D$ and $\angle B=\angle E$ . Let $K$ and $L$
be the midpoints of the sides $AB$ and $DE$ respectively. Prove that the sum of the areas of triangles $FAK$, $KCB$ and $CFL$ is equal to half of the area of the hexagon if and only if
\[\frac{BC}{CD}=\frac{EF}{FA}.\]
2007 Iran Team Selection Test, 3
Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence.
a) Prove that $B_{n}$ does not depend on location of $P$.
b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.
2017 Taiwan TST Round 1, 2
Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.
2008 China Team Selection Test, 1
Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.
2011 Philippine MO, 2
In triangle $ABC$, let $X$ and $Y$ be the midpoints of $AB$ and $AC$, respectively. On segment $BC$, there is a point $D$, different from its midpoint, such that $\angle{XDY}=\angle{BAC}$. Prove that $AD\perp BC$.
2010 Stanford Mathematics Tournament, 1
Find the reflection of the point $(11, 16, 22)$ across the plane $3x+4y+5z=7$.
2003 Iran MO (3rd Round), 20
Suppose that $ M$ is an arbitrary point on side $ BC$ of triangle $ ABC$. $ B_1,C_1$ are points on $ AB,AC$ such that $ MB = MB_1$ and $ MC = MC_1$. Suppose that $ H,I$ are orthocenter of triangle $ ABC$ and incenter of triangle $ MB_1C_1$. Prove that $ A,B_1,H,I,C_1$ lie on a circle.
Ukrainian TYM Qualifying - geometry, I.13
A candle and a man are placed in a dihedral mirror angle. How many reflections can the man see ?
1997 Putnam, 1
A rectangle, $HOMF$, has sides $HO=11$ and $OM=5$. A triangle $\Delta ABC$ has $H$ as orthocentre, $O$ as circumcentre, $M$ be the midpoint of $BC$, $F$ is the feet of altitude from $A$. What is the length of $BC$ ?
[asy]
unitsize(0.3 cm);
pair F, H, M, O;
F = (0,0);
H = (0,5);
O = (11,5);
M = (11,0);
draw(H--O--M--F--cycle);
label("$F$", F, SW);
label("$H$", H, NW);
label("$M$", M, SE);
label("$O$", O, NE);
[/asy]
2006 China Team Selection Test, 2
Let $\omega$ be the circumcircle of $\triangle{ABC}$. $P$ is an interior point of $\triangle{ABC}$. $A_{1}, B_{1}, C_{1}$ are the intersections of $AP, BP, CP$ respectively and $A_{2}, B_{2}, C_{2}$ are the symmetrical points of $A_{1}, B_{1}, C_{1}$ with respect to the midpoints of side $BC, CA, AB$.
Show that the circumcircle of $\triangle{A_{2}B_{2}C_{2}}$ passes through the orthocentre of $\triangle{ABC}$.
2008 Sharygin Geometry Olympiad, 2
(V.Protasov, 8) For a given pair of circles, construct two concentric circles such that both are tangent to the given two. What is the number of solutions, depending on location of the circles?
2004 Germany Team Selection Test, 2
Let two chords $AC$ and $BD$ of a circle $k$ meet at the point $K$, and let $O$ be the center of $k$. Let $M$ and $N$ be the circumcenters of triangles $AKB$ and $CKD$. Show that the quadrilateral $OMKN$ is a parallelogram.
2007 Iran Team Selection Test, 3
Let $\omega$ be incircle of $ABC$. $P$ and $Q$ are on $AB$ and $AC$, such that $PQ$ is parallel to $BC$ and is tangent to $\omega$. $AB,AC$ touch $\omega$ at $F,E$. Prove that if $M$ is midpoint of $PQ$, and $T$ is intersection point of $EF$ and $BC$, then $TM$ is tangent to $\omega$.
[i]By Ali Khezeli[/i]
2022 Turkey EGMO TST, 1
Given an acute angle triangle $ABC$ with circumcircle $\Gamma$ and circumcenter $O$. A point $P$ is taken on the line $BC$ but not on $[BC]$. Let $K$ be the reflection of the second intersection of the line $AP$ and $\Gamma$ with respect to $OP$. If $M$ is the intersection of the lines $AK$ and $OP$, prove that $\angle OMB+\angle OMC=180^{\circ}$.
2002 IberoAmerican, 2
Given any set of $9$ points in the plane such that there is no $3$ of them collinear, show that for each point $P$ of the set, the number of triangles with its vertices on the other $8$ points and that contain $P$ on its interior is even.
1992 AIME Problems, 11
Lines $l_1$ and $l_2$ both pass through the origin and make first-quadrant angles of $\frac{\pi}{70}$ and $\frac{\pi}{54}$ radians, respectively, with the positive x-axis. For any line $l$, the transformation $R(l)$ produces another line as follows: $l$ is reflected in $l_1$, and the resulting line is reflected in $l_2$. Let $R^{(1)}(l)=R(l)$ and $R^{(n)}(l)=R\left(R^{(n-1)}(l)\right)$. Given that $l$ is the line $y=\frac{19}{92}x$, find the smallest positive integer $m$ for which $R^{(m)}(l)=l$.