This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2013 Math Prize for Girls Olympiad, 3

$10000$ nonzero digits are written in a $100$-by-$100$ table, one digit per cell. From left to right, each row forms a $100$-digit integer. From top to bottom, each column forms a $100$-digit integer. So the rows and columns form $200$ integers (each with $100$ digits), not necessarily distinct. Prove that if at least $199$ of these $200$ numbers are divisible by $2013$, then all of them are divisible by $2013$.

2004 AIME Problems, 7

$ABCD$ is a rectangular sheet of paper that has been folded so that corner $B$ is matched with point $B'$ on edge $AD$. The crease is $EF$, where $E$ is on $AB$ and $F$is on $CD$. The dimensions $AE=8$, $BE=17$, and $CF=3$ are given. The perimeter of rectangle $ABCD$ is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(25,0), C=(25,70/3), D=(0,70/3), E=(8,0), F=(22,70/3), Bp=reflect(E,F)*B, Cp=reflect(E,F)*C; draw(F--D--A--E); draw(E--B--C--F, linetype("4 4")); filldraw(E--F--Cp--Bp--cycle, white, black); pair point=( 12.5, 35/3 ); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$B^\prime$", Bp, dir(point--Bp)); label("$C^\prime$", Cp, dir(point--Cp));[/asy]

2021 Saint Petersburg Mathematical Olympiad, 7

Kolya found several pairwise relatively prime integers, each of which is less than the square of any other. Prove that the sum of reciprocals of these numbers is less than $2$.

1994 APMO, 3

Let $n$ be an integer of the form $a^2 + b^2$, where $a$ and $b$ are relatively prime integers and such that if $p$ is a prime, $p \leq \sqrt{n}$, then $p$ divides $ab$. Determine all such $n$.

1969 IMO Shortlist, 23

$(FRA 6)$ Consider the integer $d = \frac{a^b-1}{c}$, where $a, b$, and $c$ are positive integers and $c \le a.$ Prove that the set $G$ of integers that are between $1$ and $d$ and relatively prime to $d$ (the number of such integers is denoted by $\phi(d)$) can be partitioned into $n$ subsets, each of which consists of $b$ elements. What can be said about the rational number $\frac{\phi(d)}{b}?$

2012 Korea - Final Round, 2

Let $n$ be a given positive integer. Prove that there exist infinitely many integer triples $(x,y,z)$ such that \[nx^2+y^3=z^4,\ \gcd (x,y)=\gcd (y,z)=\gcd (z,x)=1.\]

1993 Greece National Olympiad, 15

Let $\overline{CH}$ be an altitude of $\triangle ABC$. Let $R$ and $S$ be the points where the circles inscribed in the triangles $ACH$ and $BCH$ are tangent to $\overline{CH}$. If $AB = 1995$, $AC = 1994$, and $BC = 1993$, then $RS$ can be expressed as $m/n$, where $m$ and $n$ are relatively prime integers. Find $m + n$

1995 India National Olympiad, 2

Show that there are infintely many pairs $(a,b)$ of relatively prime integers (not necessarily positive) such that both the equations \begin{eqnarray*} x^2 +ax +b &=& 0 \\ x^2 + 2ax + b &=& 0 \\ \end{eqnarray*} have integer roots.

2003 AIME Problems, 2

One hundred concentric circles with radii $1, 2, 3, \dots, 100$ are drawn in a plane. The interior of the circle of radius 1 is colored red, and each region bounded by consecutive circles is colored either red or green, with no two adjacent regions the same color. The ratio of the total area of the green regions to the area of the circle of radius 100 can be expressed as $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2014 International Zhautykov Olympiad, 3

Given are 100 different positive integers. We call a pair of numbers [i]good[/i] if the ratio of these numbers is either 2 or 3. What is the maximum number of good pairs that these 100 numbers can form? (A number can be used in several pairs.) [i]Proposed by Alexander S. Golovanov, Russia[/i]

2011 Purple Comet Problems, 7

When $12{}^1{}^8$ is divided by $18{}^1{}^2$, the result is $(\tfrac{m}{n})^3$, where $m$ and $n$ are relatively prime integers. Find $m-n$.

2010 Purple Comet Problems, 23

A disk with radius $10$ and a disk with radius $8$ are drawn so that the distance between their centers is $3$. Two congruent small circles lie in the intersection of the two disks so that they are tangent to each other and to each of the larger circles as shown. The radii of the smaller circles are both $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [asy] size(150); defaultpen(linewidth(1)); draw(circle(origin,10)^^circle((3,0),8)^^circle((5,15/4),15/4)^^circle((5,-15/4),15/4)); [/asy]

1995 AIME Problems, 1

Square $S_{1}$ is $1\times 1.$ For $i\ge 1,$ the lengths of the sides of square $S_{i+1}$ are half the lengths of the sides of square $S_{i},$ two adjacent sides of square $S_{i}$ are perpendicular bisectors of two adjacent sides of square $S_{i+1},$ and the other two sides of square $S_{i+1},$ are the perpendicular bisectors of two adjacent sides of square $S_{i+2}.$ The total area enclosed by at least one of $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m-n.$ [asy] size(250); path p=rotate(45)*polygon(4); int i; for(i=0; i<5; i=i+1) { draw(shift(2-(1/2)^(i-1),0)*scale((1/2)^i)*p); } label("$S_1$", (0,-0.75)); label("$S_2$", (1,-0.75)); label("$S_3$", (3/2,-0.75)); label("$\cdots$", (7/4, -3/4)); label("$\cdots$", (2.25, 0));[/asy]

1996 All-Russian Olympiad, 3

Find all natural numbers $n$, such that there exist relatively prime integers $x$ and $y$ and an integer $k > 1$ satisfying the equation $3^n =x^k + y^k$. [i]A. Kovaldji, V. Senderov[/i]

2014 AIME Problems, 11

In $\triangle RED, RD =1, \angle DRE = 75^\circ$ and $\angle RED = 45^\circ$. Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC} \perp \overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA = AR$. Then $AE = \tfrac{a-\sqrt{b}}{c},$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$.

2011 Croatia Team Selection Test, 4

Find all pairs of integers $x,y$ for which \[x^3+x^2+x=y^2+y.\]

1993 AIME Problems, 11

Alfred and Bonnie play a game in which they take turns tossing a fair coin. The winner of a game is the first person to obtain a head. Alfred and Bonnie play this game several times with the stipulation that the loser of a game goes first in the next game. Suppose that Alfred goes first in the first game, and that the probability that he wins the sixth game is $m/n$, where $m$ and $n$ are relatively prime positive integers. What are the last three digits of $m + n$?

2014 Purple Comet Problems, 2

$\tfrac11+\tfrac13+\tfrac15=\tfrac12+\tfrac14+\tfrac16+\tfrac m n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1985 Miklós Schweitzer, 5

Let $F(x,y)$ and $G(x,y)$ be relatively prime homogeneous polynomials of degree at least one having integer coefficients. Prove that there exists a number $c$ depending only on the degrees and the maximum of the absolute values of the coefficients of $F$ and $G$ such that $F(x,y)\neq G(x,y)$ for any integers $x$ and $y$ that are relatively prime and satisfy $\max \{ |x|,|y|\} > c$. [K. Gyory]

2010 AIME Problems, 11

Let $ \mathcal{R}$ be the region consisting of the set of points in the coordinate plane that satisfy both $ |8 \minus{} x| \plus{} y \le 10$ and $ 3y \minus{} x \ge 15$. When $ \mathcal{R}$ is revolved around the line whose equation is $ 3y \minus{} x \equal{} 15$, the volume of the resulting solid is $ \frac {m\pi}{n\sqrt {p}}$, where $ m$, $ n$, and $ p$ are positive integers, $ m$ and $ n$ are relatively prime, and $ p$ is not divisible by the square of any prime. Find $ m \plus{} n \plus{} p$.

2012 USA TSTST, 3

Let $\mathbb N$ be the set of positive integers. Let $f: \mathbb N \to \mathbb N$ be a function satisfying the following two conditions: (a) $f(m)$ and $f(n)$ are relatively prime whenever $m$ and $n$ are relatively prime. (b) $n \le f(n) \le n+2012$ for all $n$. Prove that for any natural number $n$ and any prime $p$, if $p$ divides $f(n)$ then $p$ divides $n$.

2011 All-Russian Olympiad, 3

For positive integers $a>b>1$, define \[x_n = \frac {a^n-1}{b^n-1}\] Find the least $d$ such that for any $a,b$, the sequence $x_n$ does not contain $d$ consecutive prime numbers. [i]V. Senderov[/i]

2010 Purple Comet Problems, 25

Let $x_1$, $x_2$, and $x_3$ be the roots of the polynomial $x^3+3x+1$. There are relatively prime positive integers $m$ and $n$ such that $\tfrac{m}{n}=\tfrac{x_1^2}{(5x_2+1)(5x_3+1)}+\tfrac{x_2^2}{(5x_1+1)(5x_3+1)}+\tfrac{x_3^2}{(5x_1+1)(5x_2+1)}$. Find $m+n$.

2009 Princeton University Math Competition, 1

If $\phi$ is the Golden Ratio, we know that $\frac1\phi = \phi - 1$. Define a new positive real number, called $\phi_d$, where $\frac1{\phi_d} = \phi_d - d$ (so $\phi = \phi_1$). Given that $\phi_{2009} = \frac{a + \sqrt{b}}{c}$, $a, b, c$ positive integers, and the greatest common divisor of $a$ and $c$ is 1, find $a + b + c$.

2001 Korea - Final Round, 1

Given an odd prime $p$, find all functions $f:Z \rightarrow Z$ satisfying the following two conditions: (i) $f(m)=f(n)$ for all $m,n \in Z$ such that $m\equiv n\pmod p$; (ii) $f(mn)=f(m)f(n)$ for all $m,n \in Z$.