This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

1994 Tuymaada Olympiad, 7

Prove that there are infinitely many natural numbers $a,b,c,u$ and $v$ with greatest common divisor $1$ satisfying the system of equations: $a+b+c=u+v$ and $a^2+b^2+c^2=u^2+v^2$

2007 All-Russian Olympiad Regional Round, 10.7

Given an integer $ n>6$. Consider those integers $ k\in (n(n\minus{}1),n^{2})$ which are coprime with $ n$. Prove that the greatest common divisor of the considered numbers is $ 1$.

2014 Putnam, 1

Prove that every nonzero coefficient of the Taylor series of $(1-x+x^2)e^x$ about $x=0$ is a rational number whose numerator (in lowest terms) is either $1$ or a prime number.

2004 AIME Problems, 12

Let $S$ be the set of ordered pairs $(x, y)$ such that $0<x\le 1$, $0<y\le 1$, and $\left[\log_2{\left(\frac 1x\right)}\right]$ and $\left[\log_5{\left(\frac 1y\right)}\right]$ are both even. Given that the area of the graph of $S$ is $m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$. The notation $[z]$ denotes the greatest integer that is less than or equal to $z$.

2000 AIME Problems, 13

The equation $2000x^6+100x^5+10x^3+x-2=0$ has exactly two real roots, one of which is $\frac{m+\sqrt{n}}r,$ where $m, n$ and $r$ are integers, $m$ and $r$ are relatively prime, and $r>0.$ Find $m+n+r.$

2008 Purple Comet Problems, 21

The area of the quadrilateral with vertices at the four points in three dimensional space $(0,0,0)$, $(2,6,1)$, $(-3,0,3)$ and $(-4,2,5)$ is the number $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2007 China Team Selection Test, 3

Let $ n$ be a positive integer, let $ A$ be a subset of $ \{1, 2, \cdots, n\}$, satisfying for any two numbers $ x, y\in A$, the least common multiple of $ x$, $ y$ not more than $ n$. Show that $ |A|\leq 1.9\sqrt {n} \plus{} 5$.

2012 China Girls Math Olympiad, 3

Find all pairs $(a,b)$ of integers satisfying: there exists an integer $d \ge 2$ such that $a^n + b^n +1$ is divisible by $d$ for all positive integers $n$.

PEN O Problems, 11

Let $S=\{1,2,3,\ldots,280\}$. Find the smallest integer $n$ such that each $n$-element subset of $S$ contains five numbers which are pairwise relatively prime.

1994 APMO, 3

Let $n$ be an integer of the form $a^2 + b^2$, where $a$ and $b$ are relatively prime integers and such that if $p$ is a prime, $p \leq \sqrt{n}$, then $p$ divides $ab$. Determine all such $n$.

1995 APMO, 2

Let $a_1$, $a_2$, $\ldots$, $a_n$ be a sequence of integers with values between 2 and 1995 such that: (i) Any two of the $a_i$'s are relatively prime, (ii) Each $a_i$ is either a prime or a product of primes. Determine the smallest possible values of $n$ to make sure that the sequence will contain a prime number.

2012 Purple Comet Problems, 14

A circle in the first quadrant with center on the curve $y=2x^2-27$ is tangent to the $y$-axis and the line $4x=3y$. The radius of the circle is $\frac{m}{n}$ where $M$ and $n$ are relatively prime positive integers. Find $m+n$.

2007 Germany Team Selection Test, 3

Let $ a > b > 1$ be relatively prime positive integers. Define the weight of an integer $ c$, denoted by $ w(c)$ to be the minimal possible value of $ |x| \plus{} |y|$ taken over all pairs of integers $ x$ and $ y$ such that \[ax \plus{} by \equal{} c.\] An integer $ c$ is called a [i]local champion [/i]if $ w(c) \geq w(c \pm a)$ and $ w(c) \geq w(c \pm b)$. Find all local champions and determine their number. [i]Proposed by Zoran Sunic, USA[/i]

1971 IMO Longlists, 35

Prove that we can find an infinite set of positive integers of the from $2^n-3$ (where $n$ is a positive integer) every pair of which are relatively prime.

2013 NIMO Problems, 11

Find $100m+n$ if $m$ and $n$ are relatively prime positive integers such that \[ \sum_{\substack{i,j \ge 0 \\ i+j \text{ odd}}} \frac{1}{2^i3^j} = \frac{m}{n}. \][i]Proposed by Aaron Lin[/i]

2013 Princeton University Math Competition, 8

Triangle $A_1B_1C_1$ is an equilateral triangle with sidelength $1$. For each $n>1$, we construct triangle $A_nB_nC_n$ from $A_{n-1}B_{n-1}C_{n-1}$ according to the following rule: $A_n,B_n,C_n$ are points on segments $A_{n-1}B_{n-1},B_{n-1}C_{n-1},C_{n-1}A_{n-1}$ respectively, and satisfy the following: \[\dfrac{A_{n-1}A_n}{A_nB_{n-1}}=\dfrac{B_{n-1}B_n}{B_nC_{n-1}}=\dfrac{C_{n-1}C_n}{C_nA_{n-1}}=\dfrac1{n-1}\] So for example, $A_2B_2C_2$ is formed by taking the midpoints of the sides of $A_1B_1C_1$. Now, we can write $\tfrac{|A_5B_5C_5|}{|A_1B_1C_1|}=\tfrac mn$ where $m$ and $n$ are relatively prime integers. Find $m+n$. (For a triangle $\triangle ABC$, $|ABC|$ denotes its area.)

2010 Purple Comet Problems, 1

Let $x$ satisfy $(6x + 7) + (8x + 9) = (10 + 11x) + (12 + 13x).$ There are relatively prime positive integers so that $x = -\tfrac{m}{n}$. Find $m + n.$

1991 USAMO, 3

Show that, for any fixed integer $\,n \geq 1,\,$ the sequence \[ 2, \; 2^2, \; 2^{2^2}, \; 2^{2^{2^2}}, \ldots (\mbox{mod} \; n) \] is eventually constant. [The tower of exponents is defined by $a_1 = 2, \; a_{i+1} = 2^{a_i}$. Also $a_i \; (\mbox{mod} \; n)$ means the remainder which results from dividing $a_i$ by $n$.]

PEN O Problems, 59

Let $a_{1} < a_{2} < a_{3} < \cdots $ be an infinite increasing sequence of positive integers in which the number of prime factors of each term, counting repeated factors, is never more than $1987$. Prove that it is always possible to extract from $A$ an infinite subsequence $b_{1} < b_{2} < b_{3} < \cdots $ such that the greatest common divisor $(b_i, b_j)$ is the same number for every pair of its terms.

2014 Purple Comet Problems, 27

Five men and fi ve women stand in a circle in random order. The probability that every man stands next to at least one woman is $\tfrac m n$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

1972 All Soviet Union Mathematical Olympiad, 162

a) Let $a,n,m$ be natural numbers, $a > 1$. Prove that if $(a^m + 1)$ is divisible by $(a^n + 1)$ than $m$ is divisible by $n$. b) Let $a,b,n,m$ be natural numbers, $a>1, a$ and $b$ are relatively prime. Prove that if $(a^m+b^m)$ is divisible by $(a^n+b^n)$ than $m$ is divisible by $n$.

PEN A Problems, 9

Prove that among any ten consecutive positive integers at least one is relatively prime to the product of the others.

1992 IMO Longlists, 2

Let $m$ be a positive integer and $x_0, y_0$ integers such that $x_0, y_0$ are relatively prime, $y_0$ divides $x_0^2+m$, and $x_0$ divides $y_0^2+m$. Prove that there exist positive integers $x$ and $y$ such that $x$ and $y$ are relatively prime, $y$ divides $x^2 + m$, $x$ divides $y^2 + m$, and $x + y \leq m+ 1.$

2014 Contests, 3

Given are 100 different positive integers. We call a pair of numbers [i]good[/i] if the ratio of these numbers is either 2 or 3. What is the maximum number of good pairs that these 100 numbers can form? (A number can be used in several pairs.) [i]Proposed by Alexander S. Golovanov, Russia[/i]

2010 Contests, 3

Prove that for every given positive integer $n$, there exists a prime $p$ and an integer $m$ such that $(a)$ $p \equiv 5 \pmod 6$ $(b)$ $p \nmid n$ $(c)$ $n \equiv m^3 \pmod p$