Found problems: 698
2023 Turkey Junior National Olympiad, 3
Let $m,n$ be relatively prime positive integers. Prove that the numbers
$$\frac{n^4+m}{m^2+n^2} \qquad \frac{n^4-m}{m^2-n^2}$$
cannot be integer at the same time.
2006 AMC 12/AHSME, 25
A sequence $ a_1, a_2, \ldots$ of non-negative integers is defined by the rule $ a_{n \plus{} 2} \equal{} |a_{n \plus{} 1} \minus{} a_n|$ for $ n\ge 1$. If $ a_1 \equal{} 999, a_2 < 999,$ and $ a_{2006} \equal{} 1$, how many different values of $ a_2$ are possible?
$ \textbf{(A) } 165 \qquad \textbf{(B) } 324 \qquad \textbf{(C) } 495 \qquad \textbf{(D) } 499 \qquad \textbf{(E) } 660$
2002 AIME Problems, 1
Many states use a sequence of three letters followed by a sequence of three digits as their standard license-plate pattern. Given that each three-letter three-digit arrangement is equally likely, the probability that such a license plate will contain at least one palindrome (a three-letter arrangement or a three-digit arrangement that reads the same left-to-right as it does right-to-left) is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2012 Online Math Open Problems, 23
Let $ABC$ be an equilateral triangle with side length $1$. This triangle is rotated by some angle about its center to form triangle $DEF.$ The intersection of $ABC$ and $DEF$ is an equilateral hexagon with an area that is $\frac{4} {5}$ the area of $ABC.$ The side length of this hexagon can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
[i]Author: Ray Li[/i]
2012 Purple Comet Problems, 29
Let $A=\{1, 3, 5, 7, 9\}$ and $B=\{2, 4, 6, 8, 10\}$. Let $f$ be a randomly chosen function from the set $A\cup B$ into itself. There are relatively prime positive integers $m$ and $n$ such that $\frac{m}{n}$ is the probablity that $f$ is a one-to-one function on $A\cup B$ given that it maps $A$ one-to-one into $A\cup B$ and it maps $B$ one-to-one into $A\cup B$. Find $m+n$.
2014 NIMO Summer Contest, 11
Consider real numbers $A$, $B$, \dots, $Z$ such that \[
EVIL = \frac{5}{31}, \;
LOVE = \frac{6}{29}, \text{ and }
IMO = \frac{7}{3}.
\] If $OMO = \tfrac mn$ for relatively prime positive integers $m$ and $n$, find the value of $m+n$.
[i]Proposed by Evan Chen[/i]
2013 AIME Problems, 10
Given a circle of radius $\sqrt{13}$, let $A$ be a point at a distance $4 + \sqrt{13}$ from the center $O$ of the circle. Let $B$ be the point on the circle nearest to point $A$. A line passing through the point $A$ intersects the circle at points $K$ and $L$. The maximum possible area for $\triangle BKL$ can be written in the form $\tfrac{a-b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers, $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.
2012 Online Math Open Problems, 7
Two distinct points $A$ and $B$ are chosen at random from 15 points equally spaced around a circle centered at $O$ such that each pair of points $A$ and $B$ has the same probability of being chosen. The probability that the perpendicular bisectors of $OA$ and $OB$ intersect strictly inside the circle can be expressed in the form $\frac{m}{n}$, where $m,n$ are relatively prime positive integers. Find $m+n$.
[i]Ray Li.[/i]
2012 Online Math Open Problems, 10
A drawer has $5$ pairs of socks. Three socks are chosen at random. If the probability that there is a pair among the three is $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers, what is $m+n$?
[i]Author: Ray Li[/i]
2010 Indonesia TST, 3
For every natural number $ n $, define $ s(n) $ as the smallest natural number so that for every natural number $ a $ relatively prime to $n$, this equation holds: \[ a^{s(n)} \equiv 1 (mod n) \]
Find all natural numbers $ n $ such that $ s(n) = 2010 $
2009 China National Olympiad, 2
Find all the pairs of prime numbers $ (p,q)$ such that $ pq|5^p\plus{}5^q.$
2010 Balkan MO Shortlist, N3
For each integer $n$ ($n \ge 2$), let $f(n)$ denote the sum of all positive integers that are at most $n$ and not relatively prime to $n$.
Prove that $f(n+p) \neq f(n)$ for each such $n$ and every prime $p$.
2007 ITest, 39
Let $a$ and $b$ be relatively prime positive integers such that $a/b$ is the sum of the real solutions to the equation \[\sqrt[3]{3x-4}+\sqrt[3]{5x-6}=\sqrt[3]{x-2}+\sqrt[3]{7x-8}.\] Find $a+b$.
2012 USA TSTST, 3
Let $\mathbb N$ be the set of positive integers. Let $f: \mathbb N \to \mathbb N$ be a function satisfying the following two conditions:
(a) $f(m)$ and $f(n)$ are relatively prime whenever $m$ and $n$ are relatively prime.
(b) $n \le f(n) \le n+2012$ for all $n$.
Prove that for any natural number $n$ and any prime $p$, if $p$ divides $f(n)$ then $p$ divides $n$.
2014 NIMO Problems, 1
Define $H_n = 1+\frac{1}{2}+\cdots+\frac{1}{n}$. Let the sum of all $H_n$ that are terminating in base 10 be $S$. If $S = m/n$ where m and n are relatively prime positive integers, find $100m+n$.
[i]Proposed by Lewis Chen[/i]
2010 Tournament Of Towns, 2
Pete has an instrument which can locate the midpoint of a line segment, and also the point which divides the line segment into two segments whose lengths are in a ratio of $n : (n + 1)$, where $n$ is any positive integer. Pete claims that with this instrument, he can locate the point which divides a line segment into two segments whose lengths are at any given rational ratio. Is Pete right?
2011 AIME Problems, 8
In triangle $ABC$, $BC = 23$, $CA = 27$, and $AB = 30$. Points $V$ and $W$ are on $\overline{AC}$ with $V$ on $\overline{AW}$, points $X$ and $Y$ are on $\overline{BC}$ with $X$ on $\overline{CY}$, and points $Z$ and $U$ are on $\overline{AB}$ with $Z$ on $\overline{BU}$. In addition, the points are positioned so that $\overline{UV} \parallel \overline{BC}$, $\overline{WX} \parallel \overline{AB}$, and $\overline{YZ} \parallel \overline{CA}$. Right angle folds are then made along $\overline{UV}$, $\overline{WX}$, and $\overline{YZ}$. The resulting figure is placed on a level floor to make a table with triangular legs. Let $h$ be the maximum possible height of a table constructed from triangle $ABC$ whose top is parallel to the floor. Then $h$ can be written in the form $\tfrac{k \sqrt{m}}{n}$, where $k$ and $n$ are relatively prime positive integers and $m$ is a positive integer that is not divisible by the square of any prime. Find $k + m + n$.
[asy]
unitsize(1 cm);
pair translate;
pair[] A, B, C, U, V, W, X, Y, Z;
A[0] = (1.5,2.8);
B[0] = (3.2,0);
C[0] = (0,0);
U[0] = (0.69*A[0] + 0.31*B[0]);
V[0] = (0.69*A[0] + 0.31*C[0]);
W[0] = (0.69*C[0] + 0.31*A[0]);
X[0] = (0.69*C[0] + 0.31*B[0]);
Y[0] = (0.69*B[0] + 0.31*C[0]);
Z[0] = (0.69*B[0] + 0.31*A[0]);
translate = (7,0);
A[1] = (1.3,1.1) + translate;
B[1] = (2.4,-0.7) + translate;
C[1] = (0.6,-0.7) + translate;
U[1] = U[0] + translate;
V[1] = V[0] + translate;
W[1] = W[0] + translate;
X[1] = X[0] + translate;
Y[1] = Y[0] + translate;
Z[1] = Z[0] + translate;
draw (A[0]--B[0]--C[0]--cycle);
draw (U[0]--V[0],dashed);
draw (W[0]--X[0],dashed);
draw (Y[0]--Z[0],dashed);
draw (U[1]--V[1]--W[1]--X[1]--Y[1]--Z[1]--cycle);
draw (U[1]--A[1]--V[1],dashed);
draw (W[1]--C[1]--X[1]);
draw (Y[1]--B[1]--Z[1]);
dot("$A$",A[0],N);
dot("$B$",B[0],SE);
dot("$C$",C[0],SW);
dot("$U$",U[0],NE);
dot("$V$",V[0],NW);
dot("$W$",W[0],NW);
dot("$X$",X[0],S);
dot("$Y$",Y[0],S);
dot("$Z$",Z[0],NE);
dot(A[1]);
dot(B[1]);
dot(C[1]);
dot("$U$",U[1],NE);
dot("$V$",V[1],NW);
dot("$W$",W[1],NW);
dot("$X$",X[1],dir(-70));
dot("$Y$",Y[1],dir(250));
dot("$Z$",Z[1],NE);
[/asy]
1998 Korea - Final Round, 3
Denote by $\phi(n)$ for all $n\in\mathbb{N}$ the number of positive integer smaller than $n$ and relatively prime to $n$. Also, denote by $\omega(n)$ for all $n\in\mathbb{N}$ the number of prime divisors of $n$. Given that $\phi(n)|n-1$ and $\omega(n)\leq 3$. Prove that $n$ is a prime number.
2012 USA TSTST, 5
A rational number $x$ is given. Prove that there exists a sequence $x_0, x_1, x_2, \ldots$ of rational numbers with the following properties:
(a) $x_0=x$;
(b) for every $n\ge1$, either $x_n = 2x_{n-1}$ or $x_n = 2x_{n-1} + \textstyle\frac{1}{n}$;
(c) $x_n$ is an integer for some $n$.
2023 Myanmar IMO Training, 5
For a real number $x$, let $\lfloor x\rfloor$ stand for the largest integer that is less than or equal to $x$. Prove that
\[ \left\lfloor{(n-1)!\over n(n+1)}\right\rfloor \]
is even for every positive integer $n$.
2001 Romania Team Selection Test, 1
Find all polynomials with real coefficients $P$ such that
\[ P(x)P(2x^2-1)=P(x^2)P(2x-1)\]
for every $x\in\mathbb{R}$.
2010 Purple Comet Problems, 23
A disk with radius $10$ and a disk with radius $8$ are drawn so that the distance between their centers is $3$. Two congruent small circles lie in the intersection of the two disks so that they are tangent to each other and to each of the larger circles as shown. The radii of the smaller circles are both $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
size(150);
defaultpen(linewidth(1));
draw(circle(origin,10)^^circle((3,0),8)^^circle((5,15/4),15/4)^^circle((5,-15/4),15/4));
[/asy]
2005 Polish MO Finals, 2
Let $k$ be a fixed integer greater than 1, and let ${m=4k^2-5}$. Show that there exist positive integers $a$ and $b$ such that the sequence $(x_n)$ defined by \[x_0=a,\quad x_1=b,\quad x_{n+2}=x_{n+1}+x_n\quad\text{for}\quad n=0,1,2,\dots,\] has all of its terms relatively prime to $m$.
[i]Proposed by Jaroslaw Wroblewski, Poland[/i]
PEN Q Problems, 7
Let $f(x)=x^{n}+5x^{n-1}+3$, where $n>1$ is an integer. Prove that $f(x)$ cannot be expressed as the product of two nonconstant polynomials with integer coefficients.
2012 Online Math Open Problems, 11
If
\[\frac{1} {x} + \frac{1} {2x^2} +\frac{1} {4x^3}+\frac{1}{8x^4}+\frac{1}{16x^5}+\cdots=\frac{1} {64}, \]
and $x$ can be expressed in the form $\frac{m}{n},$ where $m,n$ are relatively prime positive integers, find $m+n$.
[i]Author: Ray Li[/i]