Found problems: 698
2004 China Team Selection Test, 3
Find all positive integer $ m$ if there exists prime number $ p$ such that $ n^m\minus{}m$ can not be divided by $ p$ for any integer $ n$.
2006 IMO Shortlist, 6
Let $ a > b > 1$ be relatively prime positive integers. Define the weight of an integer $ c$, denoted by $ w(c)$ to be the minimal possible value of $ |x| \plus{} |y|$ taken over all pairs of integers $ x$ and $ y$ such that \[ax \plus{} by \equal{} c.\] An integer $ c$ is called a [i]local champion [/i]if $ w(c) \geq w(c \pm a)$ and $ w(c) \geq w(c \pm b)$.
Find all local champions and determine their number.
[i]Proposed by Zoran Sunic, USA[/i]
2005 German National Olympiad, 3
Let s be a positive real.
Consider a two-dimensional Cartesian coordinate system. A [i]lattice point[/i] is defined as a point whose coordinates in this system are both integers. At each lattice point of our coordinate system, there is a lamp.
Initially, only the lamp in the origin of the Cartesian coordinate system is turned on; all other lamps are turned off. Each minute, we additionally turn on every lamp L for which there exists another lamp M such that
- the lamp M is already turned on,
and
- the distance between the lamps L and M equals s.
Prove that each lamp will be turned on after some time ...
[b](a)[/b] ... if s = 13. [This was the problem for class 11.]
[b](b)[/b] ... if s = 2005. [This was the problem for classes 12/13.]
[b](c)[/b] ... if s is an integer of the form $s=p_1p_2...p_k$ if $p_1$, $p_2$, ..., $p_k$ are different primes which are all $\equiv 1\mod 4$. [This is my extension of the problem, generalizing both parts [b](a)[/b] and [b](b)[/b].]
[b](d)[/b] ... if s is an integer whose prime factors are all $\equiv 1\mod 4$. [This is ZetaX's extension of the problem, and it is stronger than [b](c)[/b].]
Darij
2012 NIMO Problems, 8
Bob has invented the Very Normal Coin (VNC). When the VNC is flipped, it shows heads $\textstyle\frac{1}{2}$ of the time and tails $\textstyle\frac{1}{2}$ of the time - unless it has yielded the same result five times in a row, in which case it is guaranteed to yield the opposite result. For example, if Bob flips five heads in a row, then the next flip is guaranteed to be tails.
Bob flips the VNC an infinite number of times. On the $n$th flip, Bob bets $2^{-n}$ dollars that the VNC will show heads (so if the second flip shows heads, Bob wins $\$0.25$, and if the third flip shows tails, Bob loses $\$0.125$).
Assume that dollars are infinitely divisible. Given that the first flip is heads, the expected number of dollars Bob is expected to win can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$.
[i]Proposed by Lewis Chen[/i]
2014 Online Math Open Problems, 30
For a positive integer $n$, an [i]$n$-branch[/i] $B$ is an ordered tuple $(S_1, S_2, \dots, S_m)$ of nonempty sets (where $m$ is any positive integer) satisfying $S_1 \subset S_2 \subset \dots \subset S_m \subseteq \{1,2,\dots,n\}$. An integer $x$ is said to [i]appear[/i] in $B$ if it is an element of the last set $S_m$. Define an [i]$n$-plant[/i] to be an (unordered) set of $n$-branches $\{ B_1, B_2, \dots, B_k\}$, and call it [i]perfect[/i] if each of $1$, $2$, \dots, $n$ appears in exactly one of its branches.
Let $T_n$ be the number of distinct perfect $n$-plants (where $T_0=1$), and suppose that for some positive real number $x$ we have the convergence \[ \ln \left( \sum_{n \ge 0} T_n \cdot \frac{\left( \ln x \right)^n}{n!} \right) = \frac{6}{29}. \] If $x = \tfrac mn$ for relatively prime positive integers $m$ and $n$, compute $m+n$.
[i]Proposed by Yang Liu[/i]
2008 Balkan MO, 4
Let $ c$ be a positive integer. The sequence $ a_1,a_2,\ldots$ is defined as follows $ a_1\equal{}c$, $ a_{n\plus{}1}\equal{}a_n^2\plus{}a_n\plus{}c^3$ for all positive integers $ n$. Find all $ c$ so that there are integers $ k\ge1$ and $ m\ge2$ so that $ a_k^2\plus{}c^3$ is the $ m$th power of some integer.
2008 Iran Team Selection Test, 11
$ k$ is a given natural number. Find all functions $ f: \mathbb{N}\rightarrow\mathbb{N}$ such that for each $ m,n\in\mathbb{N}$ the following holds: \[ f(m)\plus{}f(n)\mid (m\plus{}n)^k\]
2011 Costa Rica - Final Round, 5
Given positive integers $a,b,c$ which are pairwise relatively prime, show that \[2abc-ab-bc-ac \] is the biggest number that can't be expressed in the form $xbc+yca+zab$ with $x,y,z$ being natural numbers.
2013 IPhOO, 1
A construction rope is tied to two trees. It is straight and taut. It is then vibrated at a constant velocity $v_1$. The tension in the rope is then halved. Again, the rope is vibrated at a constant velocity $v_2$. The tension in the rope is then halved again. And, for the third time, the rope is vibrated at a constant velocity, this time $v_3$. The value of $\frac{v_1}{v_3}+\frac{v_3}{v_1}$ can be expressed as a positive number $\frac{m\sqrt{r}}{n}$, where $m$ and $n$ are relatively prime, and $r$ is not divisible by the square of any prime. Find $m+n+r$. If the number is rational, let $r=1$.
[i](Ahaan Rungta, 2 points)[/i]
1997 Vietnam National Olympiad, 2
Let n be an integer which is greater than 1, not divisible by 1997.
Let $ a_m\equal{}m\plus{}\frac{mn}{1997}$ for all m=1,2,..,1996
$ b_m\equal{}m\plus{}\frac{1997m}{n}$ for all m=1,2,..,n-1
We arrange the terms of two sequence $ (a_i), (b_j)$ in the ascending order to form a new sequence $ c_1\le c_2\le ...\le c_{1995\plus{}n}$
Prove that $ c_{k\plus{}1}\minus{}c_k<2$ for all k=1,2,...,1994+n
1989 IMO Longlists, 27
Let $ L$ denote the set of all lattice points of the plane (points with integral coordinates). Show that for any three points $ A,B,C$ of $ L$ there is a fourth point $ D,$ different from $ A,B,C,$ such that the interiors of the segments $ AD,BD,CD$ contain no points of $ L.$ Is the statement true if one considers four points of $ L$ instead of three?
2019 European Mathematical Cup, 4
Let $u$ be a positive rational number and $m$ be a positive integer. Define a sequence $q_1,q_2,q_3,\dotsc$ such that $q_1=u$ and for $n\geqslant 2$:
$$\text{if }q_{n-1}=\frac{a}{b}\text{ for some relatively prime positive integers }a\text{ and }b, \text{ then }q_n=\frac{a+mb}{b+1}.$$
Determine all positive integers $m$ such that the sequence $q_1,q_2,q_3,\dotsc$ is eventually periodic for any positive rational number $u$.
[i]Remark:[/i] A sequence $x_1,x_2,x_3,\dotsc $ is [i]eventually periodic[/i] if there are positive integers $c$ and $t$ such that $x_n=x_{n+t}$ for all $n\geqslant c$.
[i]Proposed by Petar NiziƩ-Nikolac[/i]
2014 AIME Problems, 13
Ten adults enter a room, remove their shoes, and toss their shoes into a pile. Later, a child randomly pairs each left shoe with a right shoe without regard to which shoes belong together. The probability that for every positive integer $k<5,$ no collection of $k$ pairs made by the child contains the shoes from exactly $k$ of the adults is $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2004 Korea National Olympiad, 2
$x$ and $y$ are positive and relatively prime and $z$ is an integer. They satisfy $(5z-4x)(5z-4y)=25xy$. Show that at least one of $10z+x+y$ or quotient of this number divided by $3$ is a square number (i.e. prove that $10z+x+y$ or integer part of $\frac{10z+x+y}{3}$ is a square number).
2017 Harvard-MIT Mathematics Tournament, 8
Kelvin and $15$ other frogs are in a meeting, for a total of $16$ frogs. During the meeting, each pair of distinct frogs becomes friends with probability $\frac{1}{2}$. Kelvin thinks the situation after the meeting is [I]cool[/I] if for each of the $16$ frogs, the number of friends they made during the meeting is a multiple of $4$. Say that the probability of the situation being cool can be expressed in the form $\frac{a}{b}$, where $a$ and $b$ are relatively prime. Find $a$.
2008 China Team Selection Test, 2
Let $ n > 1$ be an integer, and $ n$ can divide $ 2^{\phi(n)} \plus{} 3^{\phi(n)} \plus{} \cdots \plus{} n^{\phi(n)},$ let $ p_{1},p_{2},\cdots,p_{k}$ be all distinct prime divisors of $ n$. Show that $ \frac {1}{p_{1}} \plus{} \frac {1}{p_{2}} \plus{} \cdots \plus{} \frac {1}{p_{k}} \plus{} \frac {1}{p_{1}p_{2}\cdots p_{k}}$ is an integer. ( where $ \phi(n)$ is defined as the number of positive integers $ \leq n$ that are relatively prime to $ n$.)
2011 Purple Comet Problems, 1
There are relatively prime positive integers $m$ and $n$ so that \[\dfrac{\dfrac{1}{2}}{\dfrac{\dfrac{1}{3}}{\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}}+\dfrac{\dfrac{1}{3}}{\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}}}=\dfrac{m}{n}.\]Find $m+2n$.
2013 AIME Problems, 9
A paper equilateral triangle $ABC$ has side length $12$. The paper triangle is folded so that vertex $A$ touches a point on side $\overline{BC}$ a distance $9$ from point $B$. The length of the line segment along which the triangle is folded can be written as $\frac{m\sqrt{p}}{n}$, where $m$, $n$, and $p$ are positive integers, $m$ and $n$ are relatively prime, and $p$ is not divisible by the square of any prime. Find $m+n+p$.
[asy]
import cse5;
size(12cm);
pen tpen = defaultpen + 1.337;
real a = 39/5.0;
real b = 39/7.0;
pair B = MP("B", (0,0), dir(200));
pair A = MP("A", (9,0), dir(-80));
pair C = MP("C", (12,0), dir(-20));
pair K = (6,10.392);
pair M = (a*B+(12-a)*K) / 12;
pair N = (b*C+(12-b)*K) / 12;
draw(B--M--N--C--cycle, tpen);
draw(M--A--N--cycle);
fill(M--A--N--cycle, mediumgrey);
pair shift = (-20.13, 0);
pair B1 = MP("B", B+shift, dir(200));
pair A1 = MP("A", K+shift, dir(90));
pair C1 = MP("C", C+shift, dir(-20));
draw(A1--B1--C1--cycle, tpen);[/asy]
2014 Purple Comet Problems, 30
Three mutually tangent spheres each with radius $5$ sit on a horizontal plane. A triangular pyramid has a base that is an equilateral triangle with side length $6$, has three congruent isosceles triangles for vertical faces, and has height $12$. The base of the pyramid is parallel to the plane, and the vertex of the pyramid is pointing downward so that it is between the base and the plane. Each of the three vertical faces of the pyramid is tangent to one of the spheres at a point on the triangular face along its altitude from the vertex of the pyramid to the side of length $6$. The distance that these points of tangency are from the base of the pyramid is $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
[asy]
size(200);
defaultpen(linewidth(0.8));
pair X=(-.6,.4),A=(-.4,2),B=(-.7,1.85),C=(-1.1,2.05);
picture spherex;
filldraw(spherex,unitcircle,white);
draw(spherex,(-1,0)..(-.2,-.2)..(1,0)^^(0,1)..(-.2,-.2)..(0,-1));
add(shift(-0.5,0.6)*spherex);
filldraw(X--A--C--cycle,gray);
draw(A--B--C^^X--B);
add(shift(-1.5,0.2)*spherex);
add(spherex);
[/asy]
2009 Math Prize For Girls Problems, 15
Let $ x \equal{} \sqrt[3]{\frac{4}{25}}\,$. There is a unique value of $ y$ such that $ 0 < y < x$ and $ x^x \equal{} y^y$. What is the value of $ y$? Express your answer in the form $ \sqrt[c]{\frac{a}{b}}\,$, where $ a$ and $ b$ are relatively prime positive integers and $ c$ is a prime number.
2013 ISI Entrance Examination, 7
Find all natural numbers $N$ for which $N(N-101)$ is a perfect square.
PEN O Problems, 3
Prove that the set of integers of the form $2^{k}-3$ ($k=2,3,\cdots$) contains an infinite subset in which every two members are relatively prime.
2020 Dutch IMO TST, 3
Find all pairs $(a, b)$ of positive integers for which $a + b = \phi (a) + \phi (b) + gcd (a, b)$.
Here $ \phi (n)$ is the number of numbers $k$ from $\{1, 2,. . . , n\}$ with $gcd (n, k) = 1$.
2001 AIME Problems, 13
In quadrilateral $ABCD$, $\angle{BAD}\cong\angle{ADC}$ and $\angle{ABD}\cong\angle{BCD}$, $AB=8$, $BD=10$, and $BC=6$. The length $CD$ may be written in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2003 Iran MO (3rd Round), 1
suppose this equation: x <sup>2</sup> +y <sup>2</sup> +z <sup>2</sup> =w <sup>2</sup> . show that the solution of this equation ( if w,z have same parity) are in this form:
x=2d(XZ-YW), y=2d(XW+YZ),z=d(X <sup>2</sup> +Y <sup>2</sup> -Z <sup>2</sup> -W <sup>2</sup> ),w=d(X <sup>2</sup> +Y <sup>2</sup> +Z <sup>2</sup> +W <sup>2</sup> )