This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

2011 District Olympiad, 3

Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a continuous and nondecreasing function. [b]a)[/b] Show that the sequence $ \left( \frac{1}{2^n}\sum_{i=1}^{2^n} f\left(\frac{i}{2^n}\right) \right)_{n\ge 1} $ is nonincreasing. [b]b)[/b] Prove that, if there exists some natural index at which the sequence above is equal to $ \int_0^1 f(x)dx, $ then $ f $ is constant.

1998 VJIMC, Problem 4-M

Prove the inequality $$\frac{n\pi}4-\frac1{\sqrt{8n}}\le\frac12+\sum_{k=1}^{n-1}\sqrt{1-\frac{k^2}{n^2}}\le\frac{n\pi}4$$for every integer $n\ge2$.

2006 Victor Vâlcovici, 2

Let be a differentiable function $ f:[0,1]\longrightarrow\mathbb{R} $ whose derivative has a positive Lipschitz constant $ L. $ Show that [b]a)[/b] $ x,y\in [0,1]\implies | f(x)-f(y)-f'(y)(x-y) |\le L\cdot (x-y)^2 $ [b]b)[/b] $ \lim_{n\to\infty } \left( n\int_0^1 f(x)dx-\sum_{i=1}^nf\left( \frac{2i-1}{2n} \right) \right) =0. $

Today's calculation of integrals, 882

Find $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k}(\ln (n+k)-\ln\ n)$.

2012 Grigore Moisil Intercounty, 3

$ \lim_{n\to\infty } \frac{1}{n}\sum_{i,j=1}^n \frac{i+j}{i^2+j^2} $

2001 SNSB Admission, 2

Let be a number $ a\in \left[ 1,\infty \right) $ and a function $ f\in\mathcal{C}^2(-a,a) . $ Show that the sequence $$ \left( \sum_{k=1}^n f\left( \frac{k}{n^2} \right) \right)_{n\ge 1} $$ is convergent, and determine its limit.

2013 Today's Calculation Of Integral, 882

Find $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k}(\ln (n+k)-\ln\ n)$.

2016 Korea USCM, 1

Find the following limit. \[\lim_{n\to\infty} \frac{1}{n} \log \left(\sum_{k=2}^{2^n} k^{1/n^2} \right)\]

2019 Ramnicean Hope, 1

Calculate $ \lim_{n\to\infty }\sum_{t=1}^n\frac{1}{n+t+\sqrt{n^2+nt}} . $ [i]D.M. Bătinețu[/i] and [i]Neculai Stanciu[/i]