This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

2020 China Girls Math Olympiad, 5

Tags: algebra , sequence
Find all the real number sequences $\{b_n\}_{n \geq 1}$ and $\{c_n\}_{n \geq 1}$ that satisfy the following conditions: (i) For any positive integer $n$, $b_n \leq c_n$; (ii) For any positive integer $n$, $b_{n+1}$ and $c_{n+1}$ is the two roots of the equation $x^2+b_nx+c_n=0$.

2015 EGMO, 4

Determine whether there exists an infinite sequence $a_1, a_2, a_3, \dots$ of positive integers which satisfies the equality \[a_{n+2}=a_{n+1}+\sqrt{a_{n+1}+a_{n}} \] for every positive integer $n$.

2024 JBMO TST - Turkey, 6

Tags: algebra , sequence
Let ${(a_n)}_{n=0}^{\infty}$ and ${(b_n)}_{n=0}^{\infty}$ be real squences such that $a_0=40$, $b_0=41$ and for all $n\geq 0$ the given equalities hold. $$a_{n+1}=a_n+\frac{1}{b_n} \hspace{0.5 cm} \text{and} \hspace{0.5 cm} b_{n+1}=b_n+\frac{1}{a_n}$$ Find the least possible positive integer value of $k$ such that the value of $a_k$ is strictly bigger than $80$.

2005 Slovenia Team Selection Test, 4

Find the number of sequences of $2005$ terms with the following properties: (i) No three consecutive terms of the sequence are equal, (ii) Every term equals either $1$ or $-1$, (iii) The sum of all terms of the sequence is at least $666$.

2011 Abels Math Contest (Norwegian MO), 1

Let $n$ be the number that is produced by concatenating the numbers $1, 2,... , 4022$, that is, $n = 1234567891011...40214022$. a. Show that $n$ is divisible by $3$. b. Let $a_1 = n^{2011}$, and let $a_i$ be the sum of the digits of $a_{i-1}$ for $i > 1$. Find $a_4$

2017 Saudi Arabia IMO TST, 3

Find the greatest positive real number $M$ such that for all positive real sequence $(a_n)$ and for all real number $m < M$, it is possible to find some index $n \ge 1$ that satisfies the inequality $a_1 + a_2 + a_3 + ...+ a_n +a_{n+1} > m a_n$.

1967 IMO Longlists, 12

Given a segment $AB$ of the length 1, define the set $M$ of points in the following way: it contains two points $A,B,$ and also all points obtained from $A,B$ by iterating the following rule: With every pair of points $X,Y$ the set $M$ contains also the point $Z$ of the segment $XY$ for which $YZ = 3XZ.$

2014 Regional Competition For Advanced Students, 3

The sequence $(a_n)$ is defined with the recursion $a_{n + 1} = 5a^6_n + 3a^3_{n-1} + a^2_{n-2}$ for $n\ge 2$ and the set of initial values $\{a_0, a_1, a_2\} = \{2013, 2014, 2015\}$. (That is, the initial values are these three numbers in any order.) Show that the sequence contains no sixth power of a natural number.

2013 Hanoi Open Mathematics Competitions, 4

Let $x_0 = [a], x_1 = [2a] - [a], x_2 = [3a] - [2a], x_3 = [3a] - [4a],x_4 = [5a] - [4a],x_5 = [6a] - [5a], . . . , $ where $a=\frac{\sqrt{2013}}{\sqrt{2014}}$ .The value of $x_9$ is: (A): $2$ (B): $3$ (C): $4$ (D): $5$ (E): None of the above.

2023 Belarus Team Selection Test, 3.2

Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define $$x_{k+1} = \begin{cases} x_k + d &\text{if } a \text{ does not divide } x_k \\ x_k/a & \text{if } a \text{ divides } x_k \end{cases}$$ Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.

2011 IMO Shortlist, 2

Determine all sequences $(x_1,x_2,\ldots,x_{2011})$ of positive integers, such that for every positive integer $n$ there exists an integer $a$ with \[\sum^{2011}_{j=1} j x^n_j = a^{n+1} + 1\] [i]Proposed by Warut Suksompong, Thailand[/i]

1966 Swedish Mathematical Competition, 4

Let $f(x) = 1 + \frac{2}{x}$. Put $f_1(x) = f(x)$, $f_2(x) = f(f_1(x))$, $f_3(x) = f(f_2(x))$, $... $. Find the solutions to $x = f_n(x)$ for $n > 0$.

1975 IMO Shortlist, 4

Let $a_1, a_2, \ldots , a_n, \ldots $ be a sequence of real numbers such that $0 \leq a_n \leq 1$ and $a_n - 2a_{n+1} + a_{n+2} \geq 0$ for $n = 1, 2, 3, \ldots$. Prove that \[0 \leq (n + 1)(a_n - a_{n+1}) \leq 2 \qquad \text{ for } n = 1, 2, 3, \ldots\]

2011 Indonesia TST, 4

Let $a, b$, and $c$ be positive integers such that $gcd(a, b) = 1$. Sequence $\{u_k\}$, is given such that $u_0 = 0$, $u_1 = 1$, and u$_{k+2} = au_{k+1} + bu_k$ for all $k \ge 0$. Let $m$ be the least positive integer such that $c | u_m$ and $n$ be an arbitrary positive integer such that $c | u_n$. Show that $m | n$. [hide=PS.] There was a typo in the last line, as it didn't define what n does. Wording comes from [b]tst-2011-1.pdf[/b] from [url=https://sites.google.com/site/imoidn/idntst/2011tst]here[/url]. Correction was made according to #2[/hide]

2004 Gheorghe Vranceanu, 1

Let be the sequence $ \left( x_n \right)_{n\ge 1} $ defined as $$ x_n= \frac{4009}{4018020} x_{n-1} -\frac{1}{4018020} x_{n-2} + \left( 1+\frac{1}{n} \right)^n. $$ Prove that $ \left( x_n \right)_{n\ge 1} $ is convergent and determine its limit.

2009 Belarus Team Selection Test, 3

Let $ a_0$, $ a_1$, $ a_2$, $ \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $ \gcd (a_i, a_{i \plus{} 1}) > a_{i \minus{} 1}$. Prove that $ a_n\ge 2^n$ for all $ n\ge 0$. [i]Proposed by Morteza Saghafian, Iran[/i]

2024 Regional Olympiad of Mexico Southeast, 4

Let \(n\) be a non-negative integer and define \(a_n = 2^n - n\). Determine all non-negative integers \(m\) such that \(s_m = a_0 + a_1 + \dots + a_m\) is a power of 2.

2023 Olimphíada, 1

The Fibonacci sequence is defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1}+F_n$ for every integer $n$. Let $k$ be a fixed integer. A sequence $(a_n)$ of integers is said to be $\textit{phirme}$ if $a_n + a_{n+1} = F_{n+k}$ for all $n \geq 1$. Find all $\textit{phirme}$ sequences in terms of $n$ and $k$.

2014 German National Olympiad, 2

For a positive integer $n$, let $y_n$ be the number of $n$-digit positive integers containing only the digits $2,3,5, 7$ and which do not have a $5$ directly to the right of a $2.$ If $r\geq 1$ and $m\geq 2$ are integers, prove that $y_{m-1}$ divides $y_{rm-1}.$

1974 Bundeswettbewerb Mathematik, 3

A circle $K_1$ of radius $r_1 = 1\slash 2$ is inscribed in a semi-circle $H$ with diameter $AB$ and radius $1.$ A sequence of different circles $K_2, K_3, \ldots$ with radii $r_2, r_3, \ldots$ respectively are drawn so that for each $n\geq 1$, the circle $K_{n+1}$ is tangent to $H$, $K_n$ and $AB.$ Prove that $a_n = 1\slash r_n$ is an integer for each $n$, and that it is a perfect square for $n$ even and twice a perfect square for $n$ odd.

2021 South East Mathematical Olympiad, 1

Tags: algebra , sequence
A sequence $\{a_n\}$ is defined recursively by $a_1=\frac{1}{2}, $ and for $n\ge 2,$ $0<a_n\leq a_{n-1}$ and \[a_n^2(a_{n-1}+1)+a_{n-1}^2(a_n+1)-2a_na_{n-1}(a_na_{n-1}+a_n+1)=0.\] $(1)$ Determine the general formula of the sequence $\{a_n\};$ $(2)$ Let $S_n=a_1+\cdots+a_n.$ Prove that for $n\ge 1,$ $\ln\left(\frac{n}{2}+1\right)<S_n<\ln(n+1).$

2023 Thailand TST, 1

Tags: algebra , sequence
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$ for all positive integers $n$. Show that $a_{2022}\leq 1$.

2024 Bulgaria MO Regional Round, 12.2

Let $N$ be a positive integer. The sequence $x_1, x_2, \ldots$ of non-negative reals is defined by $$x_n^2=\sum_{i=1}^{n-1} \sqrt{x_ix_{n-i}}$$ for all positive integers $n>N$. Show that there exists a constant $c>0$, such that $x_n \leq \frac{n} {2}+c$ for all positive integers $n$.

1947 Putnam, A1

Tags: limit , sequence
If $(a_n)$ is a sequence of real numbers such that for $n \geq 1$ $$(2-a_n )a_{n+1} =1,$$ prove that $\lim_{n\to \infty} a_n =1.$

2010 Germany Team Selection Test, 3

Find all positive integers $n$ such that there exists a sequence of positive integers $a_1$, $a_2$,$\ldots$, $a_n$ satisfying: \[a_{k+1}=\frac{a_k^2+1}{a_{k-1}+1}-1\] for every $k$ with $2\leq k\leq n-1$. [i]Proposed by North Korea[/i]